Electro Controls

Product Catalogue 2017

Contents

Contents

Thermostats - Mechanical	
Capillary Thermostat 1 stage	EC
Capillary Thermostat 2-3-4 stages	EMC
Freeze Protection Thermostat	EFP
Immersion Thermostat	EBS EBD
Strap-on Thermostat	BRC ESS
Outside Frost Thermostat	EOF
Space Thermostat	ECS
Room Thermostat 1 stage	TA2 PTR
Room Thermostat 2-3-4 stages	MTR EMR
Thermostat Guards	EG

Thermostats - Electronic
4 Sensors / Adjusters for ETE.. \& E13.. E10
Electronic Thermostats 1 stage digital ETE-1D
Electronic Thermostats 2-4-6-8 stages digital ETE-2D 4D
Thermostat / Thermometer - Digital Display ETE-D4/D6

Temperature Controllers 0-10VDC	
Temp Controller Proportional	ETC
Temp Controller Proportional-Integral	E15-PTI
E14 Temperature Controller Product Selection E14	
Temperature Controller 0-10vdc	E14-P
Compensator 0-10vdc	E14-PCOM1

Digital Displays
Display Transmitter/Position Indicator 0-10v
EDIG-2
Display Transmitter + switch 0-10vdc EDIG-4

Thyristor Controls

Single Phase Thyristor 0-10vdc EY1
3 Phase Thyristor 0-10vdc EY3

Fan Speed Controls

Fan Motor Selection Guide
1 Phase Fans MTY STL

0-10V input 1 Phase fans EVS
5 Step Auto 1 Phase fans STR
5 Step Auto 3 Phase fans STR-4

| BMS Temperature Sensors | |
| :--- | :--- | :--- |
| Sensors | Various |
| Custom Switch Plates | Various |
| Sensor / Resistance Chart | Various |
| Temperature Transmitters 4-20mA / 0-10vdc | Various |
| Input-Output Modules | |
| Single Relay 24V/ 230V/ Adjustable 0-10vdc | ESRM |
| 4 Relay Overide 4x 0-10vdc in, 4x Relay out | EROV4 |
| 2 Stg.Relay, Raise-Lower,High-Low 0-10vdc | E2RM |
| 3 Stage Relay, Seq Control, Binary 0-10vdc | E3RMT |
| 4 Stage Relay, Seq Control, Binary 0-10vdc | E4RM |
| 6 (10) Stage Relay / Seq Control 0-10vdc | E6RM |
| Phase Cut Module 0-10vdc in 0-20v out | E..PCM |
| Digital Input Multiplexers 4/6 in 0-10vdc out | E..DIM |
| Resistance Output Module | DRN3 |
| Raise / Lower in 0-10vdc out | AUD |
| Resistance Module 0-135W in 0-10vdc out | ERIM |
| Transmitter Setpoint Controller | E10-10 |
| Analogue Rescaling Module vdc / mA | ARM |
| Analogue Override Module 0-10vdc | ABM4 |
| Transformers | E230 E24 |

BMS Temperature Sensors
Sensors Various
Custom Switch Plates Various
Sensor / Resistance Chart Various
Temperature Transmitters 4-20mA / 0-10vdc Various
Input-Output Modules
Single Relay 24V/ 230V/ Adjustable 0-10vdc ESRM
4 Relay Overide $4 \times 0-10 \mathrm{vdc}$ in, 4 x Relay out EROV4
2 Stg.Relay, Raise-Lower,High-Low 0-10vdc E2RM
E3RMT
E4RM
E6RM
E.DIM
RN3
AUD
E10-10
E230 E24
Time Switches
Time Switches 1 Channel ETS
Emergency Products
Alarm Integrator EAL
Remote Alarm Panel 1,2 \& 4 Channel ERA
Plant Extension Timer 0-7 hrs EPX
Plant Extension Unit EXU
Fireman's Switch EFM EKFM
Smoke Detector RWE ST
Rain / Water / Leak Sensors EW
Condensation Sensor ECB
61 Humidity
61 Humidistat
EHR EHD
Humidity+Temperature Transmitter EHRT EHDT

63	Light	
63	Light Level Transmitter 0-10vdc	ELT
64	Occupancy	
64	Occupancy Detector Ceiling Mounted	EO-C
65	PIR Occupancy Detector	EO
66	Microwave Occupancy Detector	MWS1A-PRM
67	Air Quality \& Gas Sensors	
67	Gas Detector/Transmitter	EGS
68	Gas Monitor Panels	$\begin{aligned} & \text { EGD-M } \\ & \text { ST-MON350 } \end{aligned}$
69	Air Quality Transmitter 0-10vdc	EAQ
70	Carbon Dioxide Transmitter 0-10vdc	ECD
71	Wind Speed / Direction Level	
71	Wind Speed / Wind Direction Sensor	EWS
72	Wind Speed \& Direction Sensor	EWSD
73	Air Velocity	
73	Air Velocity / Averaging Pitot Tubes	EVP
74	Air Velocity Transmitter 0-10vdc	EAV
75	Current Switches / Sensors	
75	Current Switches Fixed	ESOL ESLT
76	Current Switches Adjustable	ESOL ESLT
77	Current Sensors 0-10vdc/4-20mA	ESOL ESLT
78	Flow	
78	Air Flow Switch	EAA
79	Liquid Flow Switch 15mm 22mm	ELF..C
80	Liquid Flow Switch 1/2" - 8"	ELF
81	Level	
81	Liquid Level Switch Horizontal	ELL EL
82	Liquid Level Switch Hi/Low	EL
83	Liquid Level Switch Vertical	EL ETF
84	Liquid Level Ultrasonic 4-20mA	ELU
85	Liquid Level Ultrasonic wiring	ELU

86	Pressure
86	Air Differential Pressure Switch
87	Low Pressure Switch Gas / Air / Liquid
88	Liquid Pressure Switch
89	Liquid Differential Pressure Switch
90	Air Differential Pressure Transmitter
91	Liquid Pressure Transmitter
92	EP

93 Damper Actuators / Valve Motors
93 Small 4 / 8 Nm 2 \& 3 point EK4
94 Small 4 / 8 Nm Modulating 0-10vdc EK4
$958 / 16 / 24 / 32$ Nm 2 \& 3 point E08 E16 E24 E32
96 8/16/24/32 Nm Modulating 0-10vdc E08 E16 E24 E32
97 / 8 / 24 / 32 Nm Modulating Wiring E08 E16 E24 E32
98 Spring Return Damper/Valve Motors ER08 ER20
99 Spring Return Damper/Valve wiring ER08 ER20
100 Damper / Valve Motor W/proof Cover EE-VMC

101 Valves / Linkages

101 Valve Linkage Mounting Instructions
1022 Way Ball Valve EB
1033 Way Ball Valve EB
104 Lift \& Lay / Seat Valves MK MKDN
105 Rotary / Shoe Valves AB AC F
106 Butterfly Valves
107 Spring Return Zone Valves
108 Safety Precautions

```
RD RDP
EZV
B
EB
MK MKDN
RD RDP
EZV
```

EC.. EC..D / EC..DM EC..W

These products are used to monitor the temperature of air or liquids. Applications include heating and air conditioning systems. The liquid filled sensing element enables a rapid response to temperature changes.									Adjustment under the cover Terminals $0.5-2.5 \mathrm{~mm}^{2}$ rising clamps Copper capillary \& bulb Volt free contacts Max. ambient $-40 /+70^{\circ} \mathrm{C}$ Thermostats may be calibrated by slowly turning the centre nut on the adjusting spindle. Enclosure Flammability UL94-VO		
Type	Stages	Range ${ }^{\circ} \mathrm{C}$		$\begin{aligned} & \text { Diff } \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{array}{r} 230 V A C \\ \text { SPDT } \\ \hline \end{array}$	Capillary Length			Max. Bulb Temp ${ }^{\circ} \mathrm{C}$	Enclosure
EC-1ML	1	-10/+12	Hand res	eset o	n low	15(8)A	1.8 m		00**	200	IP40
EC-2	1	-20/+40		0.5		15(3)A	2 m		140	60	IP43
EC-3	1	-20/+40		1.5		15(6)A	2 m		140	70	IP43
EC-4	1	-20/+40		3.5		15(6)A	2 m		100	180	IP43
EC-5	1	-20/+40		5		15(6)A	2 m		100	180	IP43
EC-6	1	0/100		2		15(4)A	2 m		100	120	IP43
EC-7	1	0/200		5		15(6)A	2 m			240	IP43
EC-8	1	0/200	Hand re	set o	high	15(6)A	2 m			240	IP43
EC-3D	1	-15/+45		1.5		15(8)A	rigid stem	include	uct holder	70	IP43*
EC-6D	1	0/70		2		15(8)A	rigid stem	include	uct holder	90	IP43*
EC-6DM	1	30/65	Hand re	set o	high	15(8)A	rigid stem	include	uct holder	90	IP43*
EC-7DM	1	60/95	Hand re	set o	high	15(8)A	rigid stem	include	uct holder	115	IP43*
EC-3W	1	-20/+40		1.5		15(6)A	2 m		140	70	IP65
EC-4W	1	-20/+40		3.5		15(6)A	2 m		100	180	IP65
EC-6W	1	0/100		2		15(4)A	2 m		100	120	IP65
EC-7W	1	0/200		5		15(6)A	2 m			240	IP65
EC-8W	1	0/200	Hand re	set o	high	15(6)A	2 m			240	IP65

CAPILLARY THERMOSTATS 2-3-4 STAGES
EMC..

These products can be used to monitor the temperature of air or liquids. Applications include switching multiple heating and air conditioning systems. The liquid filled sensing element enables a rapid response to temperature changes.							Adjustment under the cover Terminals $0.5-2.5 \mathrm{~mm}^{2}$ rising clamp Copper capillary \& bulb Volt free contacts Max ambient $-40 / 70^{\circ} \mathrm{C}$ Thermostats may be calibrated by slowly turning the centre nut on the adjusting spindle. Enclosure Flammability UL94-VO		
Type	Stages	Range ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Diff Per } \\ \text { Stage }^{\circ} \mathrm{C} \\ \hline \end{gathered}$	Diff. Between Stages ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { 230VAC } \\ \text { SPDT } \end{gathered}$	Capillary Length	$\begin{gathered} \text { Bulb } \\ \mathrm{mm} \\ \hline \end{gathered}$	Max. Bulb Temp ${ }^{\circ} \mathrm{C}$	Enclosure
EMC-22A	2	- 20/+40	1.5	1/10 adj.	2×15(3)A	2 m	8×140	60	IP43
EMC-23A	2	0/100	2.5	2/20 adj.	$2 \times 15(3) \mathrm{A}$	2 m	8×100	120	IP43
EMC-22AW	2	- 20/+40	1.5	1/10 adj.	2x15(3)A	2 m	8×140	60	IP65
EMC-23AW	2	0/100	2.5	2/20 adj.	2×15(3)A	2 m	8×100	120	IP65
EMC-341	3/4	- 20/+40	1	1	4×15(3)A	3 m	8×140	60	IP65
EMC-342	3/4	0/100	2	2.5	4×15(3)A	3 m	8×100	120	IP65

DIMENSIONS
EMC-22A.. / 23A..
EMC-34..

ACCESSORIES:
 EE-1A Duct bulb holder

EE-1B Brass Bulbwell
EE-STE Stainless Steel Bulbwell

WIRING:

EMC-22..

Diff between stages adjust via screw A Contact 1-3 close on temp rise. Contact 1-2 close on temp fall.

EMC-34..

Htg only = wire 1st stg htg to last stg on stat \& follow downwards in sequence Clg only = wire 1st stg clg to 1st stg on stat \& follow upwards in sequence $\mathrm{Htg} \& \mathrm{Clg}=$ wire heating on lower stages \& cooling on higher stages

THERMOSTATS - MECHANICAL

FREEZE PROTECTION THERMOSTATS

EFP..

DIMENSIONS

ACCESSORIES:

WIRING:

Open low = Contact 1-4 opens on temperature fall.. Temperature must rise to allow resetting

INSTALLATION: Fit the sensor to the front of the coil (downstream/air offside) or wrap around the pipe to guard against freezing at any point. No more than 10 cm of the capillary should be outside the controlled space. The thermostat will switch when 30 cm or more of any part of the capillary senses the set-point temperature. If the capillary is damaged, the unit will cut-out to the safety side. THE TEMPERATURE AROUND THE HOUSING SHOULD BE MAINTAINED HIGHER THAN THE SENSOR.

IMMERSION THERMOSTATS SINGLE/DUAL FUNCTION

BS.. EBD..

These products are used to monitor liquid temperatures in pipes, boilers, tanks etc. The liquid filled sensing enables a rapid response to temperature changes. The EBS is a single function thermostat and the EBD dual function has two separate thermostats inside the enclosure.									Hand reset models have a push button on the front cover. Volt free contacts Max. ambient $80^{\circ} \mathrm{C}$ (EBS-1 $55^{\circ} \mathrm{C}$) All supplied complete with removable brass pocket $1 / 2{ }^{\prime \prime}$ BSP. Concealed adjustment Enclosure Flammability $=$ UL94-V0		
Type	Control	$\begin{aligned} & 0^{\circ} \mathrm{C} \\ & \quad \text { Limit } \\ & \hline \end{aligned}$		Contro	Diff.	Limit	$\begin{array}{r} 230 \mathrm{~V} \\ \text { Control } \\ \hline \end{array}$	$\begin{aligned} & \text { C SPDT } \\ & \text { Limit } \end{aligned}$	Bulbwell Length	Max. Bulb Temp. ${ }^{\circ} \mathrm{C}$	Enclosure
EBS-1	0/35	-		0.5		-	10(3)A	-	120	55	IP43
EBS-2	0/80	-		2		-	10(3)A	-	100	100	IP43
EBS-3	35/95	-		4		-	15(5)A	-	100	115	IP43
EBS-4	50/130	-		6		-	15(5)A	-	100	150	IP43
EBS-7	-	30/65	Hand	reset op		-	15(5)A	-	100	90	IP43
EBS-8	-	60/95	Hand	reset op		-	15(5)A	-	100	115	IP43
EBS-9	-	95/130	Hand	reset op		-	15(5)A	-	100	150	IP43
EBS-20/L280	0/70	-		2		-	10(3)A	-	280	90	IP43
EBS-30/L280	35/95	-		4		-	15(5)A	-	280	115	IP43
EBS-70/L280	-	30/65	Hand	reset op		-	15(5)A	-	280	90	IP43
EBS-80/L280	-	60/95	Hand	reset op		-	15(5)A	-	280	115	IP43
EBD-1	0/80	0/80		2		2	10(3)A	10(3)A	100	100	IP43
EBD-2	35/95	35/95		4		4	15(5)A	15(5)A	100	115	IP43
EBD-8	35/95	60/95		4		set open high	15(5)A	15(5)A	100	115	IP43
EBD-9	50/130	95/130		4		nd reset	15(5)A	15(5)A	100	115	IP43
EBD-32/L260	35/95	35/95		4		4	15(5)A	15(5)A	260	115	IP43
EBD-38/L260	35/95	60/95		4		set open high	15(5)A	15(5)A	260	115	IP43

DIMENSIONS

EBS.

ACCESSORIES:

EE-9B	Spare brass pocket	100 mm for EBS-2..9	(NOT for EBS-1)
EE-ST9	Stainless steel pocket	100 mm for EBS-2.. 9	(NOT for EBS-1)

WIRING

EBD..

1-2 close on temp fall. 1-3 close on temp rise.
OPEN HIGH Contact 1-2 opens on temp rise. Temp must fall to allow resetting

THERMOSTATS - MECHANICAL

STRAP-ON THERMOSTATS

BRC.. ESS..

These products can be used to monitor the temperature of liquids in pipes and cylinders.			Volt free contacts ESS.. Adjustment under the Terminals $0.5-2.5 \mathrm{~mm}$ Enclosure Flammability:	e cover $\begin{aligned} & \text { BRC=UL94-HB } \\ & \text { ESS=UL94-VO } \end{aligned}$
Type \quad Range ${ }^{\circ} \mathrm{C}$	Diff ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \hline \text { 230VAC } \\ \text { SPDT } \end{gathered}$	Max. Bulb Temp ${ }^{\circ} \mathrm{C}$	Enclosure
BRC 20/90	5	15(3)A	120	IP30
ESS-1 -25/+45	2	10(3)A	70	IP43
ESS-2 0/70	2	10(3)A	90	IP43
ESS-32 35/95	4	15(5)A	115	IP43
ESS-3 50/130	6	15(5)A	130	IP43
ESS-42 30/65	Hand reset open high	15(5)A	90	IP43
ESS-4 60/95	Hand reset open high	15(5)A	115	IP43

DIMENSIONS

BRC.

ESS..

ACCESSORIES:

FIXING STRAP ADJUSTABLE UP TO 150MM DIA. IS INCLUDED.
LONGER FIXING STRAPS ARE AVAILABLE ON REQUEST

Contacts 1-3 close on temperature rise. Contacts 1-2 close on temperature fall.

ESS..

Contacts 1-3 close on temperature rise
Contacts 1-2 close on temperature fall
Open high $=$ Contact 1-2 opens on temperature rise. Temp must fall to allow resetting.

INSTALLATION: Fix the thermostat securely to the pipe. The ambient temperature around the sensor can affect the switching point.

EOF..

WIRING:

EOF-21

On temperature rise 2-1 close On temperature fall 2-3 close

On temperature rise 2-1 close
On temperature fall 2-3 close

[^0]
THERMOSTATS - MECHANICAL

SPACE THERMOSTATS

ECS..

| Type ECS thermostats monitor temperatures |
| :--- | :--- | :--- | :--- | :--- |
| inside factories, greenhouses and areas subject |
| to high humidity or regular washdown processes. |
| The liquid filled sensing elements are fixed to the |
| side of the weatherproof enclosures. |

DIMENSIONS

ECS..

WIRING:

ECS..

Contact 1-2 close on temp fall.
Contact 1-3 close on temp rise.

ROOM THERMOSTATS 1 STAGE
EOF..

| These products can be used to monitor the |
| :--- | :--- | :--- | :--- | :--- |
| temperature inside buildings and switch heating, |
| cooling or other units. These units are |
| tamperproof. |

ACCESSORIES:	EG-1000	Stat Guard Internal Dims	$133 \mathrm{H} \times 155 \mathrm{~W} \times 70 \mathrm{D}$
	EG-2000	Stat Guard Internal Dims	$102 \mathrm{H} \times 123 \mathrm{~W} \times 60 \mathrm{D}$
	EG-3000	Stat Guard Internal Dims	$123 \mathrm{H} \times 196 \mathrm{~W} \times 70 \mathrm{D}$

High impact polycarbonate, virtually unbreakable. Supplied with lock \& key

EE-BP2
Backplate for RTBSB.. will fit square or round outlet boxes.

EG.. EE-8P2

WIRING:

To remove the TA-2 front cover and
access the terminals, release the
top clip using a small, flat screwdriver.

RTBSB-001.010/045/048/910

THERMOSTATS - MECHANICAL

ROOM THERMOSTATS 2-3-4 STAGES

MTR..

ACCESSORIES:

EG-1000
EG-2000
Stat Guard Internal Dims $133 \mathrm{H} \times 155 \mathrm{~W} \times 70 \mathrm{D}$ Stat Guard Internal Dims $102 \mathrm{H} \times 123 \mathrm{~W} \times 60 \mathrm{D}$
EG-3000 Stat Guard Internal Dims 123 H x 196 W x 70 D (Guards are not suitable for EMR..)
High impact polycarbonate, virtually unbreakable. Supplied with lock \& key

WIRING:

METR75-820

MTR52-018

EMR-34

Diff between stages adjust via screw A

Htg only = wire 1st stg htg to last stg on stat \& follow downwards in sequence Clg only $=$ wire 1st stg clg to 1st stg on stat \& follow upwards in sequence $\mathrm{Htg} \& \mathrm{Clg}=$ wire heating on lower stages \& cooling on higher stages

THERMOSTAT GUARDS

DIMENSIONS

INSTALLATION:

ELECTRONIC THERMOSTAT - 1 STAGE DIGITAL

ELECTRONIC THERMOSTAT - 2-4-6-8 STAGE DIGITAL
ETE-..D

These products monitor the temperature
of air or liquid in a heating system and
control heating or cooling units in
response to temperature changes.

Add L24 for optional 24VAC/DC supply. A 120VAC version is available on request

ACCESSORIES

See table below for the valid accessories

Accessory type	Accessory part number
Temperature sensors	E10-B/C/D/DA/G./H///K/R/RA/SN/X
Set point adjuster	E10-P4,E10-P50 and E10-P95
Digital Set point adjuster	E10-S110
Digital room sensor	E10-RD
Analogue Display	E10-T
Digital display	E10-TD
	EE-M2T Enclosure for ETE-2D
	EE-M3T Enclosure for ETE-4D
	EE-M5T Enclosure for ETE-6D and 8D

Selected Product mode
ETE-2D,4D,6D or 8D

EE-DR6 Din rail holder for ETE-2D
EE-DR7 Din rail holder for ETE-4D
EE-DR5 Din rail holder for ETE-6D and 8D

DIMENSIONS/TERMINATIONS:

Connections

L+ and N -
NC,NO,C
S1 and S2
OV and N 1
$P A$ and $P B$
P 4 and PO
PO and PR
D1 and D0

MOUNTING DIMENSIONS:

Type
ETE-2D $\quad 2$ holes on diagonal at 117.15 mm centres
ETE-4D $\quad 2$ holes on diagonal at 134.5 mm centres
ETE-6D and 8D 3 holes, X dim 215 mm centres, Y dim 100 mm centres

TIMING DIAGRAM:

The diagram below shows an example on the ETE-4D relay states with rising and falling temperatures for the situation with the Neutral Zone set at 2 stages of heating and 2 stages of cooling.

SET UP: Turn on the power. Momentarily the display will show all the screen characters then the Product mode ETEHD (if the product is ETE-4D), ETE5O or ETE95 and will settle to show the NEUTRAL ZONE, TEMPERATURE and the actual temperature. This is the main menu or Temperature screen.
To select the NEUTRAL ZONE (the number of HTG/CLG stages) and one of the Product modes ETE $\mathrm{E}, \mathrm{ETE5C}$ or ETE95, press the SET button for 3 sec. The NEUTRAL ZONE cursor () and the last selected Product e.g. if the product is ETE-4D, $\varepsilon T E 40$ mode will blink
Use $\boldsymbol{\triangle}$ button to select the NEUTRAL ZONE required.
Use $\boldsymbol{\nabla}$ button to select either ETETD, ETE5O or ETE95.
Press SET briefly to exit.
Briefly press SET repeatedly to select the required parameters of SET POINT, NIGHT SETBACK, TIME DELAY, DIFFERENTIAL PER STAGE and DIFFERENCE
B/W STAGES. The numerical values of these parameters will be blinking and the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ buttons can be used to set the numerical value required. Whilst setting any parameter if the buttons are left for 10 sec the screen will return to the Temperature screen.
In the Temperature screen use of the $\boldsymbol{\Delta} \boldsymbol{\nabla}$ buttons will toggle between ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$ if required.

SENGP Sensor open circuit.

SENSH Sensor short circuit
LO / H, Set temperature below or above product range
ERRPA E10-S110 short circuit (ETE-2/4/6/8D only). Once this problem has been addressed press SET to revert to normal operation.

Observe the local regulations regarding electrical installations.
Size the power supply cables according to the load.
The minimum sensor cable size is $7 / 0.2 \mathrm{~mm}$ with a max length of 100 m . screened cable is recommended and the screen should be earthed at the controller end only.
Keep supply and sensor cables away from other power cables and devices which may cause interference.

THERMOSTATS - ELECTRONIC

ELECTRONIC THERMOSTAT/THERMOMETER WITH DISPLAY

Both products are Front Panel mounted with a digital display which indicates the sensed temperature. The ETE-D4 is suitable for controlling valves, motors, fans etc and heating or cooling devices. Type ETE-D6 is a STAND ALONE THERMOMETER.				\star				Volt free contacts Accuracy approx 1% of range ORDER DISPLAY UNIT + SENSOR ONLY For use with E10.. SENSORS ONLY - SEE SEPARATE DATA SHEET NOT for use with E10.. REMOTE ADJUSTERS \& DISPLAY units or ETE.. THERMOSTATS Enclosure Flammability = UL94-V2		
Type	Description	Stages	Display	Range ${ }^{\circ} \mathrm{C}$ Selectable	Diff ${ }^{\circ} \mathrm{C}$	Supply	$\begin{gathered} \hline \text { 230VAC } \\ \text { SPDT } \end{gathered}$	Power Consumption	Mounting	Enclosure
ETE-D4	Thermostat	1	Digital	-10/+50 or 25/95	0.5/10 adj	230VAC	10(3)A	3.3VA	Front Panel	IP00
ETE-D6	Thermometer	-	Digital	-10/+50 or 25/95	-	230VAC	-	3.3VA	Front Panel	IP00

OPTIONAL L24 = 24VAC supply

DIMENSIONS

ETE-D4/D6

WIRING: ETE-D6

Rotary switch: To select the temperature range:
Position E $\quad-10 /+50$ C Position F 25/95 C

ADJUSTMENT: ETE-D4

Press either button on the front panel and the current Setpoint is displayed. Adjust to the required value by pressing the buttons (left = decrease, right = increase) The Diff is then displayed which can also be adjusted in the same way, if required.
After the adjustments have been made, the sensed temperature will be displayed automatically.

Terminals $0.5-2.5 \mathrm{~mm}$
Screened cable is recommended.
Sensor / control signal cable size 7/0. 2 mm max length 100 m
The screen should be earthed at controller end only.
Keep sensor/control signal wires away from power cables/units which may cause interference.

TEMPERATURE CONTROLLERS 0-10VDC PROPORTIONAL 1-2 STAGES

These products can monitor the temperature inside buildings, rooms, ducts (return air), tanks, pipes etc and give a $0-10 \mathrm{vdc}$ output signal linear across the desired proportional band. Suitable to control damper motors, valve actuators, step controls, relay modules \& thyristors etc. The duct unit should be mounted in the return air. If multi-stages of heating and cooling are required, use the ETC. 52 and 2 sets of relay modules ie. $2 \times E 2 R M$ etc.						NTC thermistor sensor Supply 24VAC/DC $\pm 15 \%$ Power consumption 15 mA Load $>10 \mathrm{~K} \Omega$ Adjustment under the cover Enclosure Flammability $\begin{aligned} & \text { ETC-R.. = UL94-HB } \\ & \text { ETC-D, ETC-I = UL94-VO } \end{aligned}$		
Type	Mounting	Range ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Prop } \\ \text { Band }{ }^{\circ} \mathrm{C} \end{gathered}$	Neutral Zone ${ }^{\circ} \mathrm{C}$	Output Signal	Function	Sensor NTC	Enclosure
ETC-R50	Room	0/+50	1/10 adj.	-	$0-10 \mathrm{vdc}$	Htg or Clg	In-built	IP30
ETC-R52	Room	0/+50	1/10 adj.	1/6 adj.	2x0-10vdc	$\mathrm{Htg}+\mathrm{Clg}$	In-built	IP30
ETC-R30V	Room	15/30	1/10 adj.	-	$0-10 \mathrm{vdc}$	Htg or Clg	In-built	IP30
ETC-R32V	Room	15/30	1/10 adj.	1/6 adj.	2x0-10vdc	$\mathrm{Htg}+\mathrm{Clg}$	In-built	IP30
ETC-D50	Duct	-10/+50	1/10 adj.	-	0-10vdc	Htg or Clg	In-built	IP65
ETC-D52	Duct	-10/+50	1/10 adj.	1/6 adj.	$2 \times 0-10 \mathrm{vdc}$	$\mathrm{Htg}+\mathrm{Clg}$	In-built	IP65
ETC-D95	Duct	25/95	1/10 adj.		$0-10 \mathrm{vdc}$	Htg or Clg	In-built	IP65
ETC-II50	Immersion	-10/+50	1/10 adj.	-	$0-10 \mathrm{vdc}$	Htg or Clg	In-built	IP65
ETC-195	Immersion	25/95	1/10 adj.	-	0-10vdc	Htg or Clg	In-built	IP65

DIMENSIONS

ETC-I.. Approx 80 dia $\times 55$ Probe length 120 mm
ETC-R.. $85 \mathrm{H} \times 85 \mathrm{~W} \times 30 \mathrm{D}$ Can be mounted on square or round outlet box
ETC-D.. Approx 80dia $\times 55$ Probe length 160mm

ACCESSORIES:

$$
\begin{array}{ll}
\text { EE-2B } \quad 1 / 2 " \text { BSP } \times 120 \mathrm{~mm} & \text { Brass pocket for ETC-I.. } \\
\text { EE-STK } 11 / 2 " B S P \times 120 \mathrm{~mm} & \text { Stainless Steel pocket for ETC-I.. }
\end{array}
$$

WIRING:

WIRING:

ETC..

INSTALLATION:	Terminals $0.5-2.5 \mathrm{~mm}^{2}$	Sensor cable size $7 / 0.2 \mathrm{~mm}$	Keep away from power cables/units which may cause interference.
	Max length 100 m.	Screened cable is recommended.	The screen should be earthed at the controller end only

TEMPERATURE CONTROLLERS 0-10VDC

PROPORTIONAL/INTEGRAL 1,2 OR 3 OUTPUTS

E15-PTL...				
The E15 which has Integral, Night Setba A clear L through s Temperat selected Adjuster, This prod accessor section of	oller is a fully digital controller C proportional outputs. Setback is standard. time switch (not provided). ded to guide the user on. he E10 family should be ach as a Digital Set Point Room Sensors are available. with the functions and y. See the Accessories more information.		Temperature range Proportional band Dead Band Integral time Low limit setting Night setback Temp. Resolution Power supply Power Consumption IP rating	$\begin{aligned} & -10 \text { to }+95^{\circ} \mathrm{C} \\ & 0.5 \text { to } 50^{\circ} \mathrm{C} \\ & 0 \text { to } 15^{\circ} \mathrm{C} \\ & 0 \text { to } 500 \text { seconds } \\ & 0 \text { to } 30^{\circ} \mathrm{C} \\ & 0 \text { to } 40^{\circ} \mathrm{C} \text { (Ext. Time Switch) } \\ & 0.5^{\circ} \mathrm{C} \\ & 24 \mathrm{VAC} / \mathrm{DC}+/-15 \% \\ & 2 \mathrm{VA} \text { (without accessories) } \\ & \text { IP00 } \end{aligned}$
Type	Outputs	Functions		Protection
E15-PTL1	$1 \times 0-10 \mathrm{VDC}$	HTG or CLG		IP00
E15-PTL2	$2 \times 0-10 \mathrm{VDC}$	$\begin{gathered} \text { HTG }+\mathrm{CLG} \\ \mathrm{ITG}+\mathrm{HTG} \text { or } \mathrm{CLG}+\mathrm{CLG} \end{gathered}$		IP00
E15-PTL3	$3 \times 0-10 \mathrm{VDC}$	$\begin{aligned} & \text { CLG + CLG + CLG } \\ & \text { HTG + CLG + CLG } \\ & \text { HTG + HTG + CLG } \\ & \text { HTG + HTG + HTG } \end{aligned}$		IP00

Note: If Low Limit Sensor is connected, only one Heating output will be available

DIMENSIONS/TERMINATION:

EXAMPLE TEMPERATURE DIAGRAMS:

201 C
SET POINT 201C 1 16iC1 HTG 9iC2 OIC2 ${ }^{11 C 2}$ CLG 4iC

Example: E15-PTL1 Low Limit Mod e

SET UP: Turn on the controller. Momentarily the display will show all the screen characters then the Product mode E15 P1, E13 Plor E13P4 (only available in the E15-PTL1).
Press and hold the SET button for 3 seconds. The SET CONTROL MODE: will be displayed. Press the $\boldsymbol{\nabla}$ button to toggle between the E15 and E13, and $\mathbf{\Delta}$ button repeatedly to change the HTG/CLG mode required. Press SET to confirm the selection.
Briefly press SET repeatedly to select the required parameters i.e. SET POINT, PROP BAND, DEADBAND, INTEGRAL, LOW LIMIT, LOW LIMIT PROP BAND (if Low Limit Sensor is connected) and NIGHT SETBACK. The $\boldsymbol{\Delta} \boldsymbol{\nabla}$ buttons can be used to set numerical value required. Whilst setting the parameters, if the buttons are left for 10 seconds, the screen will return to the Temperature screen.
In the Temperature screen use $\boldsymbol{\Delta} \boldsymbol{\nabla}$ buttons repeatedly to show TEMPERATURE LOW LIMIT (if Low Limit Sensor is connected),
OUTPUT Y1\%, Y2\% and Y3\%.
Reverting to the default settings
Start with the power off.
Hold the $\mathbf{\Delta}$ button down whilst turning on the power.
LOD EF and DEF LD will be displayed.
Turn off the power and turn on again. The controller will now be in its normal state.
Diagnostic messages
ERR 51 Main Sensor short circuit or not connected.
ERR SL Low Limit Sensor short circuit.

ACCESSORIES: See the table below for the valid accessories:

Accessory type	Accessory Part number	Selected product mode	
		E15-P1/2/3	\checkmark
Temperature sensors	E10-B/C/D/DA/G/H///K/R/RA/S/N/X		\checkmark
Set Point adjuster	E10-P4,E10-P50 and E10-P95 (E13-P4 mode only)	\checkmark	
Digital Set Point Adjuster	E10-S110	\checkmark	\checkmark
Digital Room sensor	E10-RD	\checkmark	\checkmark
Analogue display	E10-T	\checkmark	\checkmark
Digital Display	E10-TD	EE-M2T	\checkmark

* E13-P4 mode is only available in the E15-PTL1. The E13-PO4 and E13-PT4 are compatible with the E15-PTL1.

INSTALLATION: Sensor cable size $7 / 0.2 \mathrm{~mm}$. Screened cable is recommended with a maximum length of 100 metres and earthed at the controller end only. Route all cables away from other power cables or devices which may cause interference.

E14 TEMPERATURE CONTROLLER 0-10VDC PRODUCT SELECTION GUIDE

SELECTION GUIDE:

Basic controller with proportional

control and a single 0-10VDC output	E14-P1	Htg or Clg
With additional outputs		
2 off 0-10VDC outputs		
3 off 0-10VDC outputs	E14-P2	$\mathrm{Htg}+\mathrm{Clg}$ or $\mathrm{Htg}+\mathrm{Htg}$ or $\mathrm{Clg}+\mathrm{Clg}$
	E14-P3	$\mathrm{Htg}+\mathrm{Htg}+\mathrm{Htg}$ or $\mathrm{Htg}+\mathrm{Htg}+\mathrm{Clg}$ or $\mathrm{Clg}+\mathrm{Clg}+\mathrm{Clg}$ or $\mathrm{Htg}+\mathrm{Clg}+\mathrm{Clg}$
With proportional + integral control for	E14-P1I	Htg or Clg
	E14-P2I	$\mathrm{Htg}+\mathrm{Clg}$ or $\mathrm{Htg}+\mathrm{Htg}$ or Clg+Clg
	E14-P3I	$\mathrm{Htg}+\mathrm{Htg}+\mathrm{Htg}$ or $\mathrm{Htg}+\mathrm{Htg}+\mathrm{Clg}$ or
With Low Limit temperature control	E14-P1LL	$\mathrm{Clg}+\mathrm{Clg}+\mathrm{Clg}$ or $\mathrm{Htg}+\mathrm{Clg}+\mathrm{Clg}$
	E14-P2LL	Htg only
	E14-P3LL +Clg	
		$\mathrm{Htg}+\mathrm{Clg}+\mathrm{Clg}$

Add the sensors required-see page

Add the accessories
Digital Set point adjuster
E10-S110
E10-TD

Room Sensor
E10-RD

Compensator version
E14-PCOM1

Add the sensors required (two)

Add the accessories
Digital flow setpoint adjuster

E14-P..

The E14 Temperature controller is a fully digital controller which can be configured with 1,2 or $30-10 \mathrm{VDC}$ outputs and other optional features such as proportional + integral control and low limit. Night setback is standard (time switch not provided).
A clear Icd display is provided to guide the user through set up and verification. The product is totally enclosed to IP54 as standard.
Temperature sensors from the E10 family should be selected and accessories such as a Digital Setpoint Adjuster and Digital Display and Room Sensor are available for use with the E14.

Supply	$24 \mathrm{VAC} / \mathrm{DC}$
Temp range	-20 to 110 deg C
Temp resolution	0.1 deg C
Prop band	1 to 15 degC
Dead band	0 to 10 degC
Integral time	0 to 300s (E14-P..I only)
Output	1,2 or 3×0-10VDC
Output resolution	0.1 VDC
Night setback range	-20 to 110 deg C
IP rating	IP54

DIMENSIONS AND WIRING:

Sensor cables should be screened cable $7 / 0.2 \mathrm{~mm}$ max length 100 m with the screen earthed at the controller end only.

SETTINGS:

Setting the Control mode

Whilst holding the \mathbf{V} push button turn the power on.
The display will show SET and CONTROL MODE.
Use the $\mathbf{~}$ to scroll through the modes and confirm with the SET push button the mode required.
The controller will then begin to operate normally

Setting of Set Point, Proportional band etc

With the temperature indication displayed press the SET push button to step through the desired parameters and the value can be set using the $\boldsymbol{\Lambda}$
and \mathbf{V} buttons.
By repeatedly pressing the SET button the parameters of:
SET POINT
PROPORTIONAL BAND Y1
PROPORTIONAL BAND Y2 (if applicable)
PROPORTIONAL BAND Y3 (if applicable)
DEADBAND Y1Y2 and Y2Y3 (if applicable)
INTEGRAL TIME (if applicable)
LOW LIMIT
LOW LIMIT PROPORTIONAL BAND
NIGHT SETBACK
can be set up.
After 10s the E14 will come out of the setting menu and operate normally.

Viewing the output data

With the temperature displayed press the $\boldsymbol{\Lambda}$ to see the output of Y 1displayed. Press the $\boldsymbol{\Lambda}$ again for display of the $Y 2$ output (if applicable) and press the a third time for display of the Y 3 output (if applicable).
DC output values are shown in \%. i.e 10VDC is 100%
This display will be maintained until the $\boldsymbol{\Lambda}$ is pressed after the last output display after which the temperature will be displayed.

Reverting to default settings

Start with the power OFF
Hold the $\boldsymbol{\Lambda}$ pushbutton down whilst turning on the power.
LoD and deFLd will be displayed followed by the display of temperature.
Turn off the power and turn on again. The controller will now be in its normal state.
More detailed instructions are shown on the Product Data sheet supplied with the product.

ACCESSORIES

E10..... Temperature sensor Select the type of sensor needed from the E10 range shown on page.......
E10-S110 Digital Setpoint adjuster
E10-TD Digital remote temperature display

COMPENSATOR 0-10VDC FOR BOILERS OR MIXING VALVES

E14-PCOM1

This compensator can be used to adjust boiler flow temperature in relation to changes in outside temperature.
The 0-10VDC output can be used to modulate an actuator/mixing valve.

Alternatively the $0-10 \mathrm{VDC}$ signal can be wired to a relay interface unit (E4RM for example) to switch several boilers in sequence.

This compensator must be used with an outside temperature sensor and a flow temperature sensor.

Supply	$24 \mathrm{VAC} / \mathrm{DC}$
Temp range	-20 t 110 degC
Temp resolution	0.1 deg C
Prop band	1 to 40 degC
Integral time	0 to 300 s
Output	$0-10 \mathrm{VDC}$
Output resolution	0.1 VDC
IP rating	IP54

DIMENSIONS AND WIRING

Sensor cables should be screened cable 7/0.2mm max length 100m with the screen earthed at the controller end only.

SETTINGS:

Setting the Control mode
Whilst holding the \mathbf{V} push button turn the power on.
The display will show SET and CONTROL MODE.
Use the $\mathbf{\Lambda}$ to scroll through the modes and confirm with the SET push button the mode required.
The controller will then begin to operate normally.
Setting of Flow temperatures, Proportional band etc
With the temperature indication displayed press the SET push button to step through the desired parameters and the value can be set using the (up arrow) and \mathbf{V} buttons.
By repeatedly pressing the SET button the parameters of:
SET POINT CALCULATED (display only)
PROPORTIONAL BAND Y1
INTEGRAL TIME
FLOW HIGH
FLOW LOW
NIGHT SETBACK
Can be displayed and set up
After 10s the display will revert to the temperature indication.
Note: the set point does not have to be set up because this is calculated from the Flow low and Flow high.
The night setback is an offset subtracted from the calculated set point.

Viewing the output data

With the temperature displayed press the $\boldsymbol{\Lambda}$ and the following temperatures will be displayed.
TEMP FLOW
TEMP OUTSIDE
Y1
The DC output value is shown in \%. i.e 10VDC is 100%
This display will be maintained until the $\boldsymbol{\Lambda}$ is pressed after which the temperature will be displayed again.

Reverting to default settings

Start with the power OFF
Hold the $\boldsymbol{\Lambda}$ pushbutton down whilst turning on the power.
LoD and deFLd will be displayed followed by the display of temperature.
Turn off the power and turn on again. The controller will now be in its normal state.
More detailed instructions are shown on the Product Data sheet supplied with the product.

ACCESSORIES

E10-X Outside temperature sensor
E10-I Immersion temperature sensor
E10-TD Digital remote temperature display
Note: The E10-S110 Digital Setpoint adjuster is not available with the E14-PCOM1

EDIG-2					
These products are Front Panel mounted and can be used to display the sensed parameter by receiving a $0-10 \mathrm{vdc}$ input from Pressure, Temperature, Humidity, Flow, Level transmitters and damper/valve motors. The display and transmitter range must be matched. Otherwise use the 0-10 or 0-100 display range. The display will be linear across the input range.	EDIG-2		Accu Suita EAV. E08. The 16 p Inpu Encl	pprox 1% o use with ED .. EHRT.. ED ..M etc. are selected switch. t $<0.5 \mathrm{~mA}$ Flammability	
Type Selectable Selectable Display Range	Supply	Input	Power Consumption	Mounting	Enclosure
$\begin{array}{clllll}\text { EDIG-2 } & \mathrm{C} & \% \mathrm{RH} & \mathrm{m} / \mathrm{s} & \mathrm{mbar} & \text { See chart } \\ & \mathrm{Bar} & \mathrm{kPa} & \mathrm{Pa} \text { etc } & \end{array}$	24VAC/DC	0-10VDC	$<3.3 \mathrm{VA}$	Front Panel	IP00

RANGE CHART:

Switch Position	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E
Display Range	$0-1$	$0-2$	$0-3$	$0-5$	$0-10$	$0-16$	$0-25$	$0-50$	$0-100$	$0-200$	$0-500$	$0-999$	$-10 /+40$	$-10 /+110$	$-10 /+50$

Example: If the range required is 0-100 mbar, then set the switch position to 8 .
At Ovdc input, the display is zero and linear up to 10 vdc , when the display will be 100 mbar
THIS PRODUCT CAN ALSO BE USED AS A POSITION INDICATOR FOR 0-10VDC DAMPER / VALVE MOTORS.

DIMENSIONS

Fixing brackets \& screws are provided.
A set of labels are included with the following symbols and can be applied to the unit as shown above -
kPa mbar $\mathrm{Pa} \mathrm{m} / \mathrm{s}$ bar $\% \mathrm{RH} \mathrm{C}$

WIRING:

EDIG-2

Rotary switch to select the range required.

INSTALLATION:	Terminals $0.5-2.5 \mathrm{~mm}$ Screened cable is recommended	Sensor / control signal cable size $7 / 0.2 \mathrm{~mm}$
	The screen should be earthed at controller end only	

TRANSMITTER DISPLAY 0-10VDC WITH SET POINT SWITCH

RANGE CHART:

Switch Position	0	1	2	3	4	5	6	7	8	9
Display Range	$0-1$	$0-2$	$0-3$	$0-5$	$0-10$	$0-16$	$0-25$	$0-50$	$0-100$	$0-200$
Diff adj.	$0.1-0.9$	$0.1-1.9$	$0.1-2.9$	$0.1-4.9$	$0.1-9.9$	$0.1-15$	$0.1-24$	$0.5-49$	$1-99$	$1-199$

Switch Position	A	b	C	D	E	F
Display Range	$0-500$	$0-999$	$-10 /+40$	$-10 /+110$	$-10 /+50$	$25 / 95$
Diff adj.	$1-499$	$1-900$	$0.5-40$	$0.5-40$	$0.5-40$	$0.5-40$

Example:

If the range required is $0-100 \mathrm{mbar}$, set the switch position to 8 .
At Ovdc input, the display is zero and linear up to 10 vdc , when the display will be 100mbar. The switch point \& differential is adjustable

DIMENSIONS
 EDIG-4

 Fixing brackets \& screws are provided

 ADJUSTMENT: Press either button on the front panel and the current Setpoint is displayed. Adjust to the required value by pressing the buttons (left =decrease, right = increase) The Diff is then displayed which can also be adjusted in the same way, if required. After the adjustments have been made, the sensed parameter will be displayed automatically.

WIRING:

EDIG-4

THYRISTOR CONTROLS

THYRISTOR CONTROLS SINGLE PHASE 0-10VDC

| These thyristor controls accept 0-10vdc |
| :--- | :--- | :--- | :--- | :--- |
| input signals from temperature controllers |
| to regulate the current flow to electric |
| heaters or other resistive loads in order to |
| achieve accurate proportional control. The |
| unit operates on the burst fire zero voltage |
| switched principle. Zero voltage switching |
| for minimum RFI. Burst firing for minimum |
| harmonic distortion. The full load is |
| switched on \& off in timed bursts and is |
| proportional to the input signal. |

Ensure unit is adequately ventilated to dissipate internally generated heat.
For use with 0-10vdc temperature controllers - see separate data sheet.

DIMENSIONS

Type	H	W	D	Weight (Kg)
EY1-1.5	82	90	50	0.14
EY1-3	150	90	65	0.64
EY1-7	150	102	102	1.15
EY1-12	200	112	146	2.19

WIRING:

EY1..

For Normal use the MAN/AUTO link should be on AUTO
On 0-10vdc input, both the ground (OV) \& signal wires must be connected. If the input signal is cut the thyristor output will be zero. During long 'off ' periods the power supply to the thyristor should be turned off. Heaters should be protected with a high temp cut-out. Select a thyristor allowing for heater battery \& supply voltage tolerances which may cause the current to increase by approx 20%. Note the fuse ratings. One internal fuse is fitted to protect the thyristor only. All cables \& external fuses must be fitted according to local regulations \& safety requirements.

Load terminal size: EY1-1.5 / EY1-3 $1.5 \mathrm{~mm}^{2} \quad$ EY1-7 $2.5 \mathrm{~mm}^{2} \quad$ EY1-12 $10 \mathrm{~mm}^{2} \quad$ Input signal terminal size $0.5-2.5 \mathrm{~mm}^{2}$
Min sensor / control signal cable size 7/0.2mm Max length 100m. The screen should be earthed at controller end only. Keep sensor/control signal wires away from power cables/units which may cause interference. Screened cable is recommended.

INSTALLATION:

Allow 25 mm clearance on horizontal axis \& 100 mm on vertical axis between units. Fit grilles or louvres to the top \& bottom of any enclosures.
Install with the cooling fins vertically - Forced ventilation may be necessary.

Air must be allowed to flow freely through the unit.
Do not exceed the maximum ambient temperature.

FAULT FINDING: Check the $0-10 \mathrm{Vdc}$ input ground $\&$ signal wires are in the correct terminals.
If the internal fuse is blowing :
Check all terminals \& wiring connections are TIGHT.
Check electric heater or load rating.
Check for short circuit on wiring or heater.
Check the fuse rating \& ensure the fuse is screwed down tightly. Loose connections can cause bad contact/arcing or the terminal to overheat. Check other units which may cause excessive current to be drawn. Check supply voltage variations.

THYRISTOR CONTROLS 3 PHASE 0-10VDC
EY3..

These thyristor controls accept 0-10vdc input signals from temperature controllers to regulate the current flow to electric heaters or other resistive loads in order to achieve accurate proportional control. The unit operates on burst fire zero voltage switched principle. Zero voltage switching for minimum RFI. Burst firing for minimum harmonic distortion. The FULL load is switched on \& off in timed bursts and is proportional to the input signal.							For other voltages DO NOT exceed the fuse rating. Fitted with fast semi-conductor fuses to protect against short circuit \& overload. Max. ambient is $40^{\circ} \mathrm{C}$ - derate 20% at $50^{\circ} \mathrm{C}$. Aluminium body with cooling fins. Metal cover Ensure unit is adequately ventilated to dissipate internally generated heat. Load > 100K Ω.		
Type	Phase	Max Heater Duty kW	Supply		Internal Fuse	Dissipated Heat (Watts)	$\begin{aligned} & \text { Thermal } \\ & \text { Cut-Out } \end{aligned}$	Mounting	Protection
EY3-10	3	10	415	50/60	20A	$3 \times$ load current	-	Din Rail	IP20
EY3-20	3	20	415	50/60	50A	$3 \times$ load current	-	Din Rail	IP20
EY3-28	3	28	415	50/60	100A	$3 \times$ load current	-	Din Rail	IP20
EY3-36	3	36	415	50/60	100A	$3 \times$ load current	-	Din Rail	IP20
EY3-54	3	54	415	50/60	100A	$3 \times$ load current	In built	Bracket	IP20
EY3-86	3	86	415	50/60	$2 \times 100 \mathrm{~A}$	$3 \times$ load current	In built	Bracket	IP20
EY3-105	3	105	415	50/60	315A	$3 \times$ load current	In built	Bracket	IP20
EY3-150	3	150	415	50/60	315A	$3 \times$ load current	In built	Bracket	IP20

For use with 0-10vdc temperature controllers - see separate data sheet. Replacement fuses available on request.

WIRING:

DELTA

For Normal use the MAN/AUTO link should be on AUTO. In MANUAL the potentiometer is used to regulate the output.
No mains neutral connection should be made to the heater. L1 \& L3 switch the current to the heater. L2 is permanently connected. The load must be split EQUALLY on all phases. During long 'off' periods the power supply to the thyristor should be turned off. Heater batteries should be protected with a high temperature cut-out.
On 0-10vdc input both the ground (OV) \& signal wires must be connected. If the input signal is cut the thyristor output will be zero.
Select a thyristor allowing for heater battery \& supply voltage tolerances which may cause the current to increase by approx 20%. Note the fuse ratings.

Two internal fuses are fitted to protect the thyristor only.
Min sensor / control signal cable size $7 / 0.2 \mathrm{~mm}$. Max length 100 m . Two screen should be earthed at controller end only. Keep sensor/control signal wires away from power cables/units which may cause interference. Screened cable is recommended. All cables \& external fuses must be fitted according to local regulations \& safety requirements. Input signal terminals $0.5-150 \mathrm{~mm}^{2}$

Load terminal sizes :
EY3-10-1.5mm² EY3-20-2.5mm ${ }^{2}$ EY3-28-4mm² EY3-36-10mm²
EY3-54-16mm² EY3-86-25mm² EY3-105-35mm EY3-150-70mm²
INSTALLATION:
Allow 25 mm clearance on horizontal axis \& 100 mm on vertical axis between units.
Air must be allowed to flow freely through the unit. Fit grilles or louvres to the top or bottom of any enclosures.
Install with cooling fins vertically - Forced ventilation may be necessary.
Do not exceed the maximum ambient temperature.

FAULT FINDING: Check the $0-10 \mathrm{Vdc}$ input ground \& signal wires are in the correct terminals.

Check the fuse rating \& ensure the fuse is screwed down tightly.

Check all terminals \& wiring connections are TIGHT. Check electric heater or load rating. Check for short circuit on wiring or heater. Loose connections can cause bad contact/arcing or the terminal to overheat. Check other units which may cause excessive current to be drawn. Check supply voltage variations.

MOTOR SELECTION GUIDE FOR FAN SPEED CONTROLS

When selecting a control to operate the speed of fan or pump motors, it is essential to consider a number of important factors. The data herein is only a brief overview. It is not intended to provide the full technical details on the selection of fans or motors. To avoid doubt the fan or motor manufacturer should be consulted for guidance.

FAN SPEED CONTROLS

MTY..	Potentiometer	1 Phase Fans	Manual Control
STL..	Potentiometer	1 Phase Fans	Manual Control
EVS..	0-10VDC Input	1 Phase Fans	Automatic Control
STR..	Transformer	1 Phase Fans	5 Step Manual Control
STR4..	Transformer	3 Phase Fans	5 Step Manual Control

Fan Speed Controls are also available for use with:

- Motors with TK thermal cut-out.
- Differential Pressure Transmitters.
- Temperature Operated.

FAN SUITABILITY

Propeller, Centrifugal and Axial.

FAN MOTOR SELECTION

Motors must be capable of running at reduced speeds and voltages.
Suitable types are split capacitor, shaded pole and 6 or 8 pole motors.
4 pole motors are most suitable as they operate over a wider control range.
2 pole motors are difficult to control <600 rpm and have poor starting performance at reduced voltages.
(This may not be problem when the 5 step fan speed controller is used)
High resistance rotors are ideal and give more stable linear characteristics.
These fan speed controls are generally not suitable for pump motor control.

TEMPERATURE

Use Class F rated rotor windings which can withstand temperatures up to $155^{\circ} \mathrm{C}$.
Running at low speeds can increase the motor temperature. Motors should be air cooled.
A larger frame size may be necessary to dissipate the extra heat generated when running at low speeds.
Motor thermal protection is recommended.
The fan speed controls are rated at $30^{\circ} \mathrm{C}$ ambient. The nominal current should be de-rated by 2% per $1^{\circ} \mathrm{C}$ increase up to a max of $40^{\circ} \mathrm{C}$.

LOAD PERFORMANCE

The motor size should be matched to the impeller load.
Optimum speed control is achieved when the motor load absorbs at least 75% of the rated nominal motor power when running at full speed.
The fan speed control nominal current should be greater than the nominal motor running current.
Several motors can be wired to one fan speed control but the current limits must not be exceeded.
Note that the running current on most motors can increase by approx 20% when the speed is reduced

FAN SPEED CONTROLS 230VAC 1 PHASE MANUAL OPERATION

| | | | |
| :--- | :--- | :--- | :--- | :--- |

Minimum Speed can be set via the internal trim potentiometer. The maximum current is based on max ambient of 30 C . Enclosure : Plastic.
Several motors can be connected at once as long as the speed control's maximum current is not exceeded.
Suitable for 2 or 3 wire motors.
The Speed Control's maximum current must be just larger than the nominal motor running current.
Start current can be $3 \times$ nominal current.

WIRING:

L - Live supply via On/Off switch: 230Vac
F- Fuse-box with spare fuse (Ceramic, Type "F")
L- Controlled live output to motor
L1- Non controlled live output 230Vac for 3 wire motors, or it can be used as a live supply to the controller, bypassing the On/Off switch which is incorporated in the turning knob/potentiometer.

All cables, isolators \& external fuses must be fitted according to local regulations, safety \& motor manufacturers requirements.

L1 : Live supply bypassing the Fuse \& On/Off switch (which is on the side) or it can be used as a supply for 3 wire motors.

FAN SPEED CONTROLS 230VAC 1 PHASE 0-10VDC INPUT
EVS..

\square These units a control the vo the 0-10vdc the motor sp Before select must be ensu Selection Guid	pt 0-10 ge outpu al increa operate a contro . Please on a sep	put signal and fan motor. As or decreases pectively. ompatibility the Motor data sheet.			EVS..	Suitable for 2 or 3 wire motors Minimum Speed can be set via the internal trim potentiometer Enclosure : Plastic Unit can be switched on/off via the illuminated switch on the side Start current can be $3 \times$ nominal current. Several motors can be connected at once as long as the speed control's maximum current is not exceeded. The maximum current is based on a maximum ambient temperature of 30 C .		
Type	Nominal Current	$\begin{gathered} \hline \text { Supply } \\ 50-60 \mathrm{~Hz} \\ \hline \end{gathered}$	Fast Blow Fuse Type "F" Fitted	Input Signal	Start Sequence Adjustment	Min Speed Adjustment	Mounting	Enclosure
EVS-0-15-DT	1.5A	230 Vac	3A	0-10VDC	As input signal	Via internal pot	Wall	IP54
EVS-0-30-DT	3A	230 Vac	3 A	0-10VDC	As input signal	Via internal pot	Wall	IP54
EVS-0-60-DT	6 A	230 Vac	6 A	0-10VDC	As input signal	Via internal pot	Wall	IP54
EVS-0100-DT	10A	230 Vac	14A	0-10VDC	As input signal	Via internal pot	Wall	IP54

The selected Speed Control's maximum current must be just larger than the nominal motor running current.
When the input signal is cut, the unit reverts to the minimum speed set via the trim pot. Factory set at 100VAC.
If the trim pot is set to 0 , the fan speed will be zero.

DIMENSIONS

EVS..

MODEL	EVS-0-15-DT	EVS-0-30-DT	EVS-0-60-DT	EVS-0100-DT
WEIGHT(kg)	0.69	0.740	0.900	0.900

Mount vertically to allow free ventilation around the unit

WIRING:

L - Live supply via On/ Off switch \& fuse
L1 - Live supply bypassing the On/Off switch \& fuse or it can be used as a supply for 3 wire motors.

SETTINGS:

Dip switches			
16	Input voltage	down	0-10VDC
		up	10-OVDC
17	Off level	down	disable off level
			enable off level
18	Kick start	down	disable kick start
			enable kick start
19	Current/Voltage	down	4-20mA
	Selection	up	0-10VDC
Potentiometers			
20	Level adjustment	$\begin{aligned} & 0-4 \mathrm{~V} \text { o } \\ & \text { Switch } \end{aligned}$	10-6V depending on 16 selection
21	Min speed adjust	60-160	
22	Max speed adjust	165-230	

All cables, isolators \& external fuses etc must be fitted according to local regulations, safety \& motor manufacturers requirements.
Min Sensor / control signal cable size $7 / 0.2 \mathrm{~mm}$ Max length 100 m . The screen should be earthed at control end only. Keep sensor / control signal wires away from power cables/units which may cause interference. Screened cable is recommended.

FAN SPEED CONTROLS 230VAC 1 PHASE 5 SPEED MANUAL OPERATION
STR..

These transfo vary the speed via a 1-5 step knob on the decreases or supply voltag Before select compatibility Please read th Selection Gui data sheet.	ntrols motors selector ch s the motor. ntrol its ensured. separate				\%	Suitable for 2 or 3 wire motors Power-On Lamp Internal fast blow fuse "F" type Start current can be $3 \times$ nominal current. When the unit is switched on and also when power is re-applied (with the speed control switch already in the on position), it will run up to the speed that is set by the knob position. The maximum current is based on max ambient of 30 C . The selected Speed Control's maximum current must be just larger than the nominal motor running current. Several motors can be connected at once - do not exceed the speed control's current rating.			
Type	Nominal Current	$\begin{gathered} \text { Supply } \\ 50-60 \mathrm{~Hz} \\ \hline \end{gathered}$	$\begin{gathered} \text { Fast } \\ 5 \times 20 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ow Fuse "F } \\ & 6 \times 32 \mathrm{~mm} \\ & \hline \end{aligned}$	Start Sequence	Manual Speed Adjustment	Mounting	Case	Enclosure
STR-1-08L22	0.8A	230Vac	1,5A		Knob Position	5 Step	Wall	Plastic	IP54
STR-1-15L22	1.5A	230 Vac	2 A	-	Knob Position	5 Step	Wall	Plastic	IP54
STR-1-22L22	2.2A	230Vac	2.5A	-	Knob Position	5 Step	Wall	Plastic	IP54
STR-1-35L22	3.5A	230Vac	5A	-	Knob Position	5 Step	Wall	Plastic	IP54
STR-1-50L22	5A	230Vac	8A	-	Knob Position	5 Step	Wall	Plastic	IP54
STR-1-75L22	7.5A	230Vac	10A	-	Knob Position	5 Step	Wall	Plastic	IP54
STR-1100L22	10A	230Vac	-	14A	Knob Position	5 Step	Wall	Plastic	IP54
STR-1130L22	13A	230Vac	-	18A	Knob Position	5 Step	Wall	Plastic	IP54
STR-1160L22	16A	230 Vac	-	25A	Knob Position	5 Step	Wall	Metal	IP54
STR-1200L22	20A	230 Vac	-	30A	Knob Position	5 Step	Wall	Metal	IP54

DIMENSIONS

STR.

Mount vertically to allow free ventilation around the unit

WIRING:

STR.

All cables \& external fuses must be fitted according to local regulations, safety and motor manufacturers requirements.

CAUTION:

These products may be connected to 230 VAC supply. Isolate device from electrical supply before removing cover. Observe design limits of temperatures and electrical ratings.

The device should be checked by a qualified technician before applying any voltage. Observe all relevant safety precautions, wiring/earthing regulations \& electrical ratings. Ensure all entry holes are completely sealed for all IP65/weatherproof models.

Always ensure the device operates at the correct electrical rating. If failure of the device can cause damage a safety backup control should be fitted.
All data is for guidance purposes only, subject to change without prior notice and not guaranteed to be absolutely correct unless confirmed by us in writing.

FAN SPEED CONTROLS 400VAC 3 PHASE 5 SPEED MANUAL OPERATION
STR-4-..

These transformer controls vary the speed of fan motors via a 1-5 step manual selector knob on the front which decreases or increases the supply voltage to the motor. Before selecting a controller its compatibility must be ensured. Please read the Motor Selection Guide on a separate data sheet.					Suitable for 2 or 3 wire motors. Start current can be $3 \times$ nominal current. Several motors can be connected at once as long as the speed controller's maximum current is not exceeded. The maximum current is based on a maximum ambient temperature of 30 C . The selected Speed Controller's maximum current must be just larger than the nominal motor running current. When the unit is switched on and also when power is re-applied (with the speed control switch already in the on position), it will run up to the speed that is set by the knob position.		
Type	Nominal Current	Supply $50-60 \mathrm{~Hz}$	Start Sequence	Manual Speed Adjustment	Mounting	Case	Enclosure
STR-4-15L40	1.5A	400 Vac	Knob Position	5 Step	Wall	Metal	IP54
STR-4-25L40	2.5 A	400 Vac	Knob Position	5 Step	Wall	Metal	IP54
STR-4-40L40	4A	400 Vac	Knob Position	5 Step	Wall	Metal	IP54
STR-4-60L40	6A	400 Vac	Knob Position	5 Step	Wall	Metal	IP54
STR-4-80L40	8A	400 Vac	Knob Position	5 Step	Wall	Metal	IP54
STR-4-110L40	11A	400 Vac	Knob Position	5 Step	Wall	Metal	IP54

DIMENSIONS

STR.

	A	B	C	D	E	Weight(kg)
STR-4-15L40	300	300	170	260	260	7
STR-4-25L40	300	300	170	260	260	9
STR-4-40L40	300	250	220	210	260	14
STR-4-60L40	400	300	220	260	360	20.5
STR-4-80L40	400	300	220	260	360	27.7
STR-4-110L40	430	400	270	360	360	31.7

Mount vertically to allow free ventilation around the unit

WIRING:

STR..

All cables \& external fuses must be fitted according to local regulations, safety and motor manufacturers requirements.

TEMPERATURE SENSORS FOR B.M.S

A range of NTC Thermistor, Ni1000 \& PT100/PT1000 sensors for use with most manufacturers BMS equipment.
NTC /Ni
Sensors only suitable for up
to $110^{\circ} \mathrm{C}$
Enclosure Flammability:
ED, EF $=$ UL94-V0
EX, EM, ES, EX $=$ UL94-V0
ER, EV, EH $=$ UL94-HB

TO ORDER - SELECT PREFIX + SUFFIX ie Room Sensor for Trend System = ER-10K3A1, Andover Duct sensor = ED-10K4A1

BMS TEMPERATURE SENSORS

CUSTOM SWITCH PLATES

A variety of special switch plates are available with different plate and sensor holder materials, with a choice of NTC sensor and with or without a potentiometer.

All plates fit a standard single gang BS box.
Plate size $86 \times 86 \mathrm{~mm}$ and approx 2 mm thick

Most requirements can be specified using a unique part number. The complete part number can be constructed using the following step by step process:
STEP 1 Choose the plate material.
White plastic
Stainless
ESP-S-

Brass
ESP-B

Other Finishes
See special items

STEP 2 Specify whether a potentiometer is required.

Stainless
ESP-S-P

Brass
ESP-B-P

STEP 3 Specify the NTC sensor required.

Any of the sensors on the Temperature Sensors for BMS page of this catalogue can be specified. For example 10K3A1, LS1000 etc.
STEP 4 Specify whether a button sensor holder is required

Button
ESP-S-10K3A1/b

STEP 5 Specify any special items

Examples of this are:
Special engraving
Off switch on the potentiometer at the low value end
Special finishes-Note a sample must be provided for matching purposes.

B.M.S TEMPERATURE RESISTANCE CHART

VALUES LISTED ARE FOR GUIDANCE PURPOSES ONLY - SEE MANUFACTURERS DATA FOR FURTHER INFORMATION IF REQUIRED.

	3K3A1	10K3A1	10K3A1/A	10K4A1	20K6A1	30K6A1	100K6A1	PT100	PT1000	TAC1	LST1	LS1000	SN1000
Temp ${ }^{\circ} \mathrm{C}$	Res Ω	$\begin{gathered} \text { Res } \\ \Omega \end{gathered}$	$\begin{gathered} \text { Res } \\ \Omega \end{gathered}$	Res Ω	$\begin{gathered} \text { Res } \\ \Omega \end{gathered}$	$\begin{gathered} \text { Res } \\ \Omega \end{gathered}$							
-30	53005	176683	9465	135233	415479	622944	2077394	88.22	882	23800	1934	871.6	842
-20	29092	96974	9067	78930	221297	331876	1106485	92.16	922	13700	2030	913.5	893
-15	21868	72895	8796	61030	163875	245785	819378	94.12	941	10500	2078	934.7	919
-10	16589	55298	8472	47549	122473	183697	612366	96.09	961	8220	2127	956.2	946
-5	12694	42314	8093	37316	92336	138502	461683	98.04	980	6450	2176	977.9	973
0	9795	32650	7661	29490	70203	105305	351017	100	1000	5120	2226	1000.0	1000
1	9309	31030	7569	28157	66524	99787	332619	100.39	1004		2236	1004.4	1006
2	8850	29500	7475	26891	63058	94588	315258	100.78	1008		2246	1008.8	1011
3	8416	28054	7379	25689	59792	89689	298959	101.17	1012		2256	1013.3	1017
4	8006	26688	7281	24547	56713	85069	283558	101.56	1015		2266	1017.8	1022
5	7619	25396	7182	23462	53809	80713	269041	101.95	1019	4090	2276	1022.2	1028
6	7252	24173	7082	22430	51068	76604	255337	102.34	1024		2286	1026.7	1033
7	6905	23016	6980	21450	48483	72726	242414	102.73	1027		2296	1031.2	1039
8	6577	21921	6877	20517	46043	69064	230210	103.12	1031		2306	1035.7	1044
9	6266	20885	6772	19631	43739	65608	218688	103.51	1035		2316	1040.2	1050
10	5971	19904	6667	18787	41562	62347	207807	103.90	1039	3290	2326	1044.7	1056
11	5692	18974	6560	17983	39505	59257	197521	104.29	1043		2337	1049.3	1061
12	5428	18092	6453	17219	37561	56346	187803	104.68	1047		2347	1053.8	1067
13	5177	17257	6345	16490	35723	53585	178613	105.07	1051		2357	1058.4	1072
14	4940	16465	6236	15797	33985	50978	169924	105.46	1055		2367	1063.0	1078
15	4714	15714	6126	15136	32341	48511	161702	105.85	1058	2670	2377	1067.6	1084
16	4500	15001	6016	14507	30785	46178	153923	106.24	1062	2560	2388	1072.1	1090
17	4297	14325	5906	13906	29312	43969	146560	106.63	1066	2460	2398	1076.7	1095
18	4105	13623	5795	13334	27918	41877	139588	107.02	1070	2360	2408	1081.3	1101
19	3916	13053	5681	12788	26597	39895	132984	107.40	1074	2270	2418	1086.0	1107
20	3748	12494	5573	12268	25346	38019	126729	107.79	1078	2180	2429	1090.6	1112
21	3583	11943	5369	11771	24160	36240	120799	108.18	1082	2100	2439	1095.3	1118
22	3426	11420	5353	11297	23035	34554	115179	108.57	1086	2020	2449	1099.9	1124
23	3277	10923	5243	10845	21970	32955	109850	108.96	1090	1940	2460	1104.6	1130
24	3135	10450	5134	10413	20959	31438	104796	109.35	1094	1870	2470	1109.3	1136
25	3000	10000	5025	10000	20000	30000	100000	109.73	1098	1800	2480	1113.9	1141
26	2871	9572	4917	9606	19089	28635	95449	110.12	1101		2491	1119.6	1147
27	2749	9165	4809	9229	18225	27339	91128	110.51	1105		2501	1123.4	1153
28	2633	8777	4703	8869	17405	26108	87026	110.90	1110		2512	1128.1	1159
29	2522	8408	4597	8525	16625	24939	83129	111.28	1113		2522	1132.8	1165
30	2417	8056	4492	8197	15885	23828	79428	111.67	1117	1490	2532	1137.6	1171
35	1959	6530	3987	6754	12697	19046	63489	113.61	1136		2585	1161.5	1200
40	1598	5325	3518	5594	10211	15317	51058	115.54	1155	1040	2638	1185.7	1230
45	1310	4367	3089	4656	8259	12390	41301	117.47	1175		2692	1210.2	1260
50	1080	3601	2702	3893	6719	10079	33598	119.40	1194	740	2745	1234.9	1291
55	895.5	2985	2358	3271	5495	8243	27479	121.32	1213		2800	1260.0	1322
60	746.2	2487	2056	2760	4518	6777	22593	123.24	1232	540	2855	1285.4	1353
65	624.7	2082	1792	2339	3733	5600	18669	125.16	1251		2910	1311.1	1385
70	525.5	1751	1563	1990	3100	4650	15502	127.07	1271	400	2966	1337.1	1417
80	376.9	1256	1193	1458	2167	3251	10837	130.89	1309	300	3079	1390.1	1483
90	274.8	916.0	921	1084	1542	2313	7710	134.70	1347	230	3194	1444.4	1549
100	203.6	678.6	722	817.2	1115	1672	5574	138.50	1385	180	3311	1500.0	1618
110	153.0	510.1	575	624.1	818.9	1228	4092	142.29	1423		3430	1556.9	1688
120	116.6	388.6	466	482.5	609.9	914	3047	146.06	1461		3552	1615.3	1760
130	89.95	300.0	386	377.2	460.4	690	2299	149.82	1498		3675	1675.1	1833
140	70.23	234.1	324	298.1	351.8	527	1756	153.58	1536		3801	1736.4	1909
150	55.44	184.8	278	238.0	272.0	407	1357	157.31	1573		3929	1799.2	1987
160								161.04	1610				
170								164.76	1648				
180								168.46	1685				
190								172.16	1722				
200								175.84	1758				
250								194.07	1941				
300								212.02	2120				
350								229.67	2297				
400								247.04	2470				

TEMPERATURE TRANSMITTERS 4-20MA / 0-10VDC

$4-20 \mathrm{~mA}$ devices Supply $=24 \mathrm{VDC}$ loop $\pm 25 \% \quad 0-10 \mathrm{vdc}$ devices Supply $=24 \mathrm{VAC} / D C \pm 15 \%$

ACCESSORIES:

EE-2B Brass pocket for El.. up to $110^{\circ} \mathrm{C}$
EE-STK Stainless steel pocket for El.. EJ.
EE-ESS Larger dia. fixing strap for strap-on stats / sensors. Per metre

EG-1000 Stat Guard Internal dims $133 \mathrm{H} \times 155 \mathrm{~W} \times 70 \mathrm{D}$
EG-2000 Stat Guard Internal dims 102H X 123 W X 60D
EG-1000 / EG-2000
EE-ESS

B.M.S INPUT - OUTPUT MODULES SINGLE AND ADJUSTABLE RELAY

DIN RAIL mounted relay modules compatible with building management systems, providing a switched output when an input signal is applied. The 12VDC relay is suitable for use with TREND controllers ONLY which give a $0-10 \mathrm{vdc}$ output. For other $0-10 \mathrm{vdc}$ systems use model ESRM-10.				24 / 230.		Volt free contacts Din rail mounting Max Ambient -20 /+50 C Auto eject relay clip Flammability = UL94-V0 ESRM-10 only: Off-On-Auto link to aid commissioning. LED light on when relay energised. Input current $>0.5 \mathrm{~mA}$	
Type	Switch Point Input Approx.	Voltage	Resistance	Coil Current Approx mA	Switch Rating 230VAC SPDT	Compatibility	Enclosure
ESRM-12DC	8 VDC	12 VDC	576Ω	20	(3)A	TREND I-Q 0 10vdc ONLY	IP00
ESRM-24DC	17 VDC	24 VDC	1440Ω	18	12(3)A	24 vdc B.M.S. controllers	IP00
ESRM-24AC	17 VAC	24 VAC	350Ω	32	12(3)A	TREND IQ	IP00
ESRM-230AC	172 VAC	230 VAC	32500Ω	3.3	12(3)A	Most B.M.S. controllers	IP00
Type	Input	Supply $\pm 15 \%$		Switch Rating 230VAC SPDT	Feedback Output	Consumption	Enclosure
ESRM-10	0-10VDC adj.	24VAC/DC		10(3)A	0-10VDC	51 mA	IP00

DIMENSIONS

ESRM-12 / 24/ 230.

ESRM-10

INPUT-OUTPUT MODULES

B.M.S RELAY OVERRIDE MODULE 1-4 X 0-10VDC INPUTS 4 RELAY OUTPUTS

DIMENSIONS:
AX-ORM4C Connection

WIRING:

Up to $4 \times 0-10 \mathrm{vdc}$ inputs

Each 0-10vdc input and relay output is independent. Outputs 1,2,3 or 4 can be linked to just one input IN1.
C-NO makes at approx >5 vdc for each relay and C-NC makes at approx <4vdc for each relay. ie 0-4vdc OFF 5-10vdc ON.

O - Link to switch relay permanently off.
H - Link to switch relay permanently on.
A - Link to switch relay via the input signal. IN1 -

ALL ON - Link to switch all output relays permanently on. NORMAL - Link to switch the relays via 0-10vdc input. Outputs 1,2,3 or 4 can be linked to switch from $1 \times 0-10 \mathrm{v}$ input.

Terminals $0.5-2.5 \mathrm{~mm}^{2}$ rising clamps
Screened cable is recommended Keep sensor/control signal wires away from power cables/units which may cause interference.

B.M.S INPUT OUTPUT MODULES 2 STAGE RELAY, RAISE - LOWER, HIGH LOW 0-10VDC

E2RM..

INSTALLATION:

HIGH-LOW Mode - Relays switch in sequence.

High/Low	LOW	HIGH
0 v	OFF	OFF
5 v	ON	OFF
10 v	ON	ON

RAISE-LOWER Mode - Relays switch as shown in the table below.

Raise/Lower	LOWER	RAISE
0 v	OFF	OFF
5 v	ON	OFF
7 v	OFF	OFF
10 v	OFF	ON

All values are maximum switching points. Exact switching points may be slightly lower than those stated

Terminals $0.5-2.5 \mathrm{~mm}^{2}$ rising clamps
Screened cable is recommended
Keep sensor/control signal wires away from power cables/units which may cause interference.

B.M.S INPUT - OUTPUT MODULES 3 STAGE RELAY, SEQUENCE, BINARY 0-10VDC

E3RMT..

These products accept a 0-10vdc input and produce a 3 stage relay output which can be used for external plant switching. 4 modes of operation can be selected: 3 stage switching, Heat - Cool + Fan, Sequence or 2 Stage Binary.
For multi-stage heating \& cooling, 2 of these units or other relay modules can be used with the E13.. temperature controllers or similar.

ON-OFF-AUTO Manual Override
links on each relay: -

ON	$=$ Energised
OFF	$=$ De-energised
AUTO	$=$ Controller operated

AUTO = Controller operated
Volt free contacts LED's indicate relay status
Din-Rail mounting
Consumption 80 mA
Input current > 1 mA
Max Ambient $-10 /+50^{\circ} \mathrm{C}$
Flammability = UL94-V0

Type	Supply $+-15 \%$	Input Signal	Switch Rating $230 V A C ~ S P D T$	Operation Selectable	Time Delay	Enclosure
E3RMT	24 VAC/DC	$0-10 V D C$	$3 \times 10(3) A$	3 Stage relay or Fan + Cool/Heat Sequence or 2 Stage Binary	0-60s	IP00

DIMENSIONS:

WIRING:

	REV OVIN OV 24 V			
		且	\%	
Mode 1	戒]	Ано	А HO	А H O
Mode 2		-		
Step	ow off	R1	R2	R3
	30			
TimeDelay	$0 \oplus 60$	\cdots	$\pm \times$	$\square \times$

Time Delay :	Allows a time period before each stage switches on or off.
	Set to 0 if not required.

MODE	MODE 1	MODE 2
3 stage	C	C
Fan + heat/cool	B	A
Sequence	C	B
2 stage Binary	B	B

INSTALLATION:
3 STAGE RELAY MODE
FAN - HEAT - COOL MODE
SEQUENCE MODE
BINARY MODE
Only 1 stage on at any time

	RL1	RL1	RL2
$0 v$	OFF	OFF	OFF
$4 v$	ON	OFF	OFF
$7 v$	OFF	ON	OFF
$10 v$	OFF	OFF	ON

	OUT 1	OUT 2
$0 v$	OFF	OFF
$4 v$	ON	OFF
$7 v$	OFF	ON
$10 v$	ON	ON

htly lower than those stated
All values are maximum switching points. Exact switching points may be slightly lower than those stated

Terminals $0.5-2.5 \mathrm{~mm}^{2}$ rising clamps
Screened cable is recommended
Screened cable is recommended Keep sensor/control signal wires away from power cables/units which may cause interference.

Max length 100 m
Min sensor / control signal cable size $7 / 0.2 \mathrm{~mm}$

	FAN	COOL	HEAT
$0 v$	OFF	OFF	OFF
$4 v$	ON	ON	OFF
$7 v$	ON	OFF	OFF
$10 v$	ON	OFF	ON

1-3 switch on as input increases

	LOW	MID	HIGH
0 v	OFF	OFF	OFF
4 v	ON	OFF	OFF
7 v	ON	ON	OFF
10 v	ON	ON	ON

B.M.S INPUT - OUPUT MODULES 4 STAGE RELAY, SEQUENCE, BINARY 0-10VDC

UP TO 10 STAGED SWITCHING ACROSS 0-10VDC CAN BE ACHIEVED WHEN THIS PRODUCT IS USED WITH THE E6RM

DIMENSIONS:

MODE RESET LINK : Remove link before changing modes and re-fit the link to reset the operation.

TIME DELAY : Allows a time period between each stage switching on or off.

INSTALLATION:

STAGED MODE mode1 $=\mathrm{C} \quad$ mode2 $=\mathrm{C}$
Relays $1-4$ switch on as the input signal increases

INPUT	RLY 1	RLY 2	RLY 3	RLY 4
0 v	OFF	OFF	OFF	OFF
2.4 V	ON	OFF	OFF	OFF
4.8 V	ON	ON	ON	OFF
7.2 V	ON	ON	ON	OFF
9.6 V	ON	ON	ON	ON

SEQUENCED MODE mode1 $=\mathrm{C} \quad$ mode2 $=\mathrm{C}$ Only one relay is on at any time

INPUT	RLY 1	RLY 2	RLY 3	RLY 4
0 v	OFF	OFF	OFF	OFF
2.4 V	ON	OFF	OFF	OFF
4.8 V	OFF	ON	OFF	OFF
7.2 V	OFF	OFF	ON	OFF
9.6 V	OFF	OFF	OFF	ON

STAGED MODE mode1 $=\mathrm{A} \quad$ mode $2=\mathrm{B}$
Relays 4-1 switch on as the input signal increases when terminals R-R are closed via a volt free contact.

INPUT	RLY 1	RLY 2	RLY 3	RLY 4
OV	OFF	OFF	OFF	OFF
2.4 V	OFF	OFF	OFF	ON
4.8 V	OFF	OFF	ON	ON
7.2 V	OFF	ON	ON	ON
9.6 V	ON	ON	ON	ON

STAGED MODE + E6RM = 10 STG. JP1 = B JP2 = A
Connect 0-10VDC to both E6RM and E4RM.
No time delay or reverse action.

INPUT	RLY 1	RLY 2	RLY 3	RLY 4
6 V	OFF	OFF	OFF	OFF
7 V	ON	OFF	OFF	OFF
8 V	ON	ON	OFF	OFF
9 V	ON	ON	ON	OFF
10 V	ON	ON	ON	ON

BINARY MODE JP1 = B JP2 = B

INPUT	0.6	1.2	1.8	2.4	3.0	3.6	4.2	4.8	5.4	6.0	6.6	7.2	7.8	8.4	9.4	9.6
RLY 1	OFF	ON														
RLY 2	OFF	OFF	ON	ON												
RLY 3	OFF	OFF	OFF	OFF	ON	ON	ON	ON	OFF	OFF	OFF	OFF	ON	ON	ON	ON
RLY 4	OFF	ON														

All values are maximum switching points. Exact switching points may be slightly lower than those stated
Terminals $0.5-2.5 \mathrm{~mm}^{2}$ rising clamps
Min sensor / control signal cable size $7 / 0.2 \mathrm{~mm}$
Max length 100 m
Screened cable is recommended
The screen should be earthed at controller end only
Keep sensor/control signal wires away from power cables/units which may cause interference.

B.M.S INPUT - OUTPUT MODULES 6 (10) STAGE RELAY, SEQUENCE 0-10VDC

E6RM

UP TO 10 STAGED SWITCHING ACROSS 0-10VDC CAN BE ACHIEVED WHEN THIS PRODUCT IS USED WITH THE E4RM

DIMENSIONS:

MODE RESET LINK : Remove link before changing modes and re-fit the link to reset the operation.
TIME DELAY : Allows a time period between each stage switching on or off.

WIRING:

NC NOC NCNOC NCNOC NCNOC NCNOC NCNOC

INSTALLATION:

STAGED MODE mode1 $=\mathrm{C} \quad$ mode2 $=\mathrm{C}$
Relays $1-6$ switch on as the input signal increases.

INPUT	RLY 1	RLY 2	RLY 3	RLY 4	RLY 5	RLY 6
0 v	OFF	OFF	OFF	OFF	OFF	OFF
2 v	ON	OFF	OFF	OFF	OFF	OFF
3 v	ON	ON	OFF	OFF	OFF	OFF
4.5 v	ON	ON	ON	OFF	OFF	OFF
6 v	ON	ON	ON	ON	OFF	OFF
7.8 v	ON	ON	ON	ON	ON	OFF
10 v	ON	ON	ON	ON	ON	ON

SEQUENCED MODE mode1 $=\mathrm{C} \quad$ mode $2=\mathrm{B}$ Only one relay is on at any time.

INPUT	RLY 1	RLY 2	RLY 3	RLY 4	RLY 5	RLY 6
0 v	OFF	OFF	OFF	OFF	OFF	OFF
2 v	ON	OFF	OFF	OFF	OFF	OFF
3 v	OFF	ON	OFF	OFF	OFF	OFF
4.5 v	OFF	OFF	ON	OFF	OFF	OFF
6 v	OFF	OFF	OFF	ON	OFF	OFF
7.8 v	OFF	OFF	OFF	OFF	ON	OFF
10 v	OFF	OFF	OFF	OFF	OFF	ON

STAGED MODE - REVERSE D mode1 = A mode2 = B
Relays 6-1 switch on as the input signal increases when terminals R-R are closed via a volt free contact.

INPUT	RLY 1	RLY 2	RLY 3	RLY 4	RLY 5	RLY 6
$0 v$	OFF	OFF	OFF	OFF	OFF	OFF
$2 v$	OFF	OFF	OFF	OFF	OFF	ON
$3 v$	OFF	OFF	OFF	OFF	ON	ON
4.5 v	OFF	OFF	OFF	ON	ON	ON
$6 v$	OFF	OFF	ON	ON	ON	ON
$7.8 v$	OFF	ON	ON	ON	ON	ON
$10 v$	ON	ON	ON	ON	ON	ON

STAGED MODE + E4RM $=10$ STAGES JP1=B JP2=A Connect 0-10VDC to both E6RM and E4RM. No time delay or reverse action.

$\mathbb{I N P U T}$	RLY 1	RLY 2	RLY 3	RLY 4	RLY 5	RLY 6
0 v	OFF	OFF	OFF	OFF	OFF	OFF
$1 v$	ON	OFF	OFF	OFF	OFF	OFF
$2 v$	ON	ON	OFF	OFF	OFF	OFF
$3 v$	ON	ON	ON	OFF	OFF	OFF
$4 v$	ON	ON	ON	ON	OFF	OFF
$5 v$	ON	ON	ON	ON	ON	OFF
$10 v$	ON	ON	ON	ON	ON	ON

All values are maximum switching points. Exact switching points may be slightly lower than those stated
$\begin{array}{ll}\text { Terminals } 0.5-2.5 \mathrm{~mm}^{2} \text { rising clamps } & \text { Min sensor / control signal cable size } 7 / 0.2 \mathrm{~mm} \\ \text { Screened cable is recommended } & \text { The screen should be earthed at controller end only }\end{array}$
Keep sensor/control signal wires away from power cables/units which may cause interference.

B.M.S INPUT - OUTPUT MODULES 0-10VDC TO 0-20V PHASE CUT

E..PCM

DIMENSIONS

For the 24VAC POWER SUPPLY select transformer VA rating according to actuator rating.
NOTE: The ESPCM \& EHPCM can only be used for $1 \times 0-10 \mathrm{VDC}$ input \& $1 \times 0-20 \mathrm{~V}$ phase cut output using channel 1 .
The EDPCM can be used for 2×0-10VDC input $\& 2 \times 0-20 \mathrm{~V}$ phase cut output using channels $1 \& 2$.
If the $0-10 \mathrm{VDC}$ input signal is removed, that channel will be cut off.
THE OUTPUTS MUST NOT BE CONNECTED OR DISCONNECTED WHEN THE UNIT IS POWERED AS THIS WILL DAMAGE THE UNIT.

INSTALLATION:	Terminals $0.5-2.5 \mathrm{~mm}$ rising clamps Screened cable is recommended Keep sensor/control signal wires away from power cables/units which may cause interference.	Min sensor / control signal cable size $7 / 0.2 \mathrm{~mm}$
The screen should be earthed at the controller end only		

WIRING:

Jumpers

OUTPUT LINK:
Select V for vdc output
OFFSET LINK
Select 0-9vdc or 0.4-9.4vdc output adjustable via pot.

MODE LINK:
Select N for normal output

Mode: Normal or Reverse Action :

$$
N=\text { Normal } \quad \text { 细 }
$$

$$
\mathrm{R}=\text { Reverse } \quad \square \pi
$$

$$
\text { Off }-0
$$

细
versions

All inputs must be volt free. Screened cable is recommended to eliminate electrical interference.

B.M.S INPUT-OUTPUT MODULES 0-10VDC IN 0-135 / 0-1000 OUT

DRN3.1..

WIRING:

DRN3.1..

The jumper settings for S1- S6 are as shown above.
The resistance between terminals B and R will increase as the input signal increases and the resistance between W and R will decrease.

Sensor cable size $7 / 0.2 \mathrm{~mm}$ Screened cable is recommended

Keep away from power cables/units which may cause interference.
The screen should be earthed at the controller OV terminal only.

INPUT-OUTPUT MODULES

B.M.S INPUT-OUTPUT MODULE RAISE / LOWER IN 0-10VDC OUT

*The time it takes for the output to go from 0-10VDC

WIRING:

INSTALLATION:

Terminals $0.5-2.5 \mathrm{~mm}$
Sensor cable size $7 / 0.2 \mathrm{~mm}$
Keep away from power cables/units which may cause interference.
Max length 100 m .
Screened cable is recommended.
The screen should be earthed at the controller OV terminal only.

> TRIAC Jumper
> Position

95

Controller / Triac Output (isolated)

Controller / Triac Output (not isolated)

B.M.S RESISTANCE INPUT MODULE 135/1000』 IN 0-10VDC OUT

DIMENSIONS
ERIM 135R/1K

WIRING:

ERIM 135R/1K

DIMENSIONS

E10-10

EXAMPLES:

E10-10 used with a pressure transmitter ie range $\mathbf{0} \mathbf{- 1 6}$ bar $\& \mathbf{0}-10 \mathrm{vdc}$ output.

A setpoint of 50% represents 8 bar. A prop band of 10% represents 1.6 bar (10% of the range) $\mathrm{J} 4 \& \mathrm{~J} 5$ link on $0-10$.
Therefore the output will be $0-10 \mathrm{vdc}$ linear over the range from 8 bar Ovdc to 9.6 bar 10vdc.
If $\mathrm{J} 4 \& \mathrm{~J} 5$ link is on $10-0$ then the output will be $0-10 \mathrm{vdc}$ linear over the range from 8 bar 0 vdc to 6.4 bar 10 vdc .
E10-10 used with a humidity transmitter ie range $\mathbf{0 - 1 0 0 \%}$ RH \& 0-10vdc output.
A setpoint of 40% represents 40% RH. A prop band of 20% represents 20% RH (20% of the range) J 4 \& J 5 link on 0-10
Therefore the output will be $0-10 \mathrm{vdc}$ linear over the range from 40% RH Ovdc to 60% RH 10vdc.
If J 4 \& J 5 link is on 10-0 then the output will be $0-10 \mathrm{vdc}$ linear over the range from $40 \% \mathrm{RH}$ Ovdc to $20 \% \mathrm{RH} 10 \mathrm{vdc}$.

WIRING:

E10-10

J1 Fit link to interna

J2 To select remote setpoint offset $\pm 5 \%$ or no offset

J3 Select I-V Conv to convert a 4-20mA input signal directly to 0-10VDC Output. The setpoint adj has no effect in this mode.

J4 \& J5 Set both to 0-10 with rising input above the setpoint, the output also rises.
Set both to 10-0 with falling input below the setpoint, the output rises.

J6 \& J7 Set both to 4-20mA or 0-10V to select the input signal

NSTALLATION: Terminals $0.5-2.5 \mathrm{~mm}^{2}$ rising clamps
Screened cable is recommended Keep sensor/control signal wires away from power cables/units which may cause interference.

B.M.S INPUT - OUTPUT MODULES ANALOGUE RESCALING VDC / MA

DIMENSIONS

SETUP :

Factory Calibration

No Attenuation of the Input Signal
Voltage Input
Voltage Output
Normal Acting Output Signal
No Offset to the Output Signa
Gain of 1 to the Output Signal (1:1)

Trim Pots Fully Clockwise

FINE
GAIN = gain of 1
REV $=0$ volts reverse
OFFSET = 0 volts offset

Trim Pots Fully Counter-clockwise
ATTN = no input signal attenuation

The input signal is NOT isolated from the output. When using a 24VAC supply, all devices connected to the ARM must use the same ground. Terminals $0.5-2.5 \mathrm{~mm}$
Min cable size $7 / 0.2 \mathrm{~mm}$. Max length 100 m Keep sensor/control signal wires away from power cables/units which may cause interference. Screened cable is recommended

$0-10 \mathrm{vdc}$ to 5-10VDC

J1 to normal position.
J2 to positive position.
J3 to voltage input, voltage output
Apply Ovdc to the input.
Adjust OFFSET for a 5vdc output.
Apply 10 vdc to the input.
Adjust ATTN for a 10vdc output.
$0-10 \mathrm{VDC}$ to $\mathbf{4 - 2 0 \mathrm { mA }}$
J 1 to normal position. J2 to positive position J3 to voltage input, current output
Apply Ovdc to the input.
Adjust OFFSET for a 4 mA output.
Apply 10 vdc to the input.
Adjust ATTN for a 20 mA output.

4-20mA to 0-10VDC

J1 to normal position. J 2 to negative position. J3 to current input, voltage output. Apply 4 mA to the input. Adjust OFFSET for a Ovdc output.
Apply 20 mA to the input.
Adjust GAIN for a 10 vdc output.

$0-10 \mathrm{VDC}$ to 8-2VDC

J1 to reverse position.
J2 to no offset position.
J3 to voltage input, voltage output.
Apply Ovdc to the input.
Adjust REV for an 8vdc output .
Apply 10 vdc to the input.
Adjust ATTN for a 2 vdc output.

$0-10 \mathrm{VDC}$ to 0-5VDC

J 1 to normal position.
J2 to no offset position.
J3 to voltage input, voltage output.
Apply Ovdc to the input.
Check output is Ovdc.
Apply 10 vdc to the input.
Adjust ATTN for a 5 vdc output.

NOTE : Equivalent Calibration voltage $=$ Required Input Signal Amps $\times 250$ (ie. 4 mA is $0.004 \times 250=1 \mathrm{vdc}$ and 20 mA is $0.020 \times 250=5 \mathrm{vdc}$) Set up the unit with a voltage input and / or output (changing J 3) using the formula. If required change J 3 back to the correct setting.

B.M.S INPUT - OUTPUT MODULES ANALOGUE BUFFER MODULE 0-10VDC

INSTALLATION:

Selecting Inputs -

Selecting Inputs -

Buffering Outputs -

When an output is set to BUFFER the signal is buffered to 20 mA in both HAND and AUTO modes.

When an output is set to DIRECT, the signal is only powered from the pot in HAND mode or the input in AUTO mode.

When the output is set to OFF, the output signal is open circuit.

Hand Mode -

When an input link is set to HAND, the output signal can be set by adjusting the associated pot.

NOTE -

All the Ov terminals are common. There must be only one link used per channel.

Min sensor / control signal cable size $7 / 0.2 \mathrm{~mm}$
The screen must be earthed at controller end only

Max length 100m. Keep sensor/control signal wires away from power cables/units which may cause interference.
EXAMPLES:

TRANSFORMERS

E230..

Din rail mounting modules used to convert AC and DC voltages.					Max Ambient -10/+50 C Terminals $0.5-2.5 \mathrm{~mm}$ rising clamps Flammability = UL94-V0 If fitting inside an enclosure, ensure adequate ventilation is provided as these units can become hot.		
Type	$\begin{aligned} & \text { Input } \\ & \pm 10 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Output } \\ & \pm 15 \% \\ & \hline \end{aligned}$	Primary Fuse Rating	Secondary Fuse Rating	VA	Mounting	Enclosure
E230-24AC1	230VAC	24VAC	315 mA (T)	1A (T)	25	Din Rail	IP00
E230-24AC2	230VAC	24VAC	315 mA (T)	2A (T)	50	Din Rail	IP00
E230-24AC3	230VAC	24VAC	315 mA (T)	3 A (T)	75	Din Rail	IP00
E230-24DC1	230VAC	24VAC	315 mA (T)	1A (T)	-	Din Rail	IP00

Power supplies with other outputs available to special order

DIMENSIONS
E230..

	W	D
E230-24AC1	113	78
E230-24AC2	113	85
E230-24AC3	130	90
E230-24DC1	113	78

Accessories: EE-M2T Wall mounting enclosure for E230-24AC1. $125 \mathrm{H} \times 125 \mathrm{~W} \times 75 \mathrm{D}$ Protection IP65
This enclosure has no ventilation - therefore do not use on loads above 20VA
DO NOT USE WITH OTHER TRANSFORMERS due to size and ventilation requirements

WIRING:

E230..

TIME SWITCHES

ETS..

| These time switches can be used to |
| :--- | :--- | :--- | :--- |
| control heating, lighting, appliances, etc. |

DIMENSIONS

ETS-1CH

PRoGramming: Setting the Programs
Settings can be programmed for a day or a block of days.
There are six block options:
Mo Tu We Th Fr Sa Su
Mo Tu We Th Fr
Sa Su
Mo Tu We Th Fr Sa
Mo We Fr
Tu Th Sa
Press the P (Prog.) button to set the first ON setting.
Press D+ (Day) button to select the desired day or block of days. Then press the $\mathrm{H}+$ (Hour) and $\mathrm{M}+$ (Min.) buttons to set the time. Once correct press the P button again to validate.
Now set the OFF setting the same way, pressing P to validate once correct.
Repeat for the remaining ON and OFF settings required.
When all the settings have been programmed press the 'clock' button and the timer is ready to operate.

Setting the Clock

Press the 'clock' button and hold, simultaneously press the:

> D+ button until the correct day
> H+ button until the correct hour
> M+ button until the correct minute

Then release both buttons and the clock will be set.

Viewing and Changing Settings

Press P several times to view each setting and use the $H+$ and $\mathrm{M}+$ buttons to make any time changes if desired, then press P to validate.

Resetting

To reset the timer press the 'reset' button. This will erase all clock and program settings.

Manual Override

Use the 'manual' button to override the program by pressing it several times to select, Permanent ON, Permanent OFF or back to Auto (Auto mode is the mode which uses the program settings).

Summer/Winter Changeover

To change from winter to summer time press the 'Hour' and 'Min.' buttons simultaneously. The clock will be set forward 1 hour and an " S " will appear in the display.
Repeat this procedure to select winter time.

Random Mode

To enter Random mode press the 'Day' and 'Hour' buttons simultaneously - an "R" will appear on the display. The Random mode and programs will work at the same time separately.

ALARM INTEGRATOR

EAL..

| EAL.. Provides a common alarm output for |
| :--- | :--- | :--- | :--- | :--- | :--- |
| up to 9 separate alarm input signals. |
| Parallel connection is possible for |
| additional alarm inputs. |

DIMENSIONS
EAL..

WIRING:

EAL..

L1	L2	L3	LA	L5	L6

When a signal is received on any input - volt free contacts C-NO close

All alarm inputs L1 to L9 must be same voltage and phase

The neutral must be common to all alarm inputs

Each input is isolated to prevent backfeed between inputs

Connect output C-NO in parallel to additional units if more than 9 inputs are required.

EMERGENCY PRODUCTS

REMOTE ALARM PANEL

ERA..

This product accepts a switched input 230 VAC, 24VAC/DC or a 0-10VDC adjustable input signal to provide an audible and visual alarm.			ERA... 2 \square ERA.. 1 / ERA-2			Flush Mounting Fits square single gang BS box Protrudes 18mm from wall Buzzer 70dB at 1m Enclosure Colour : White suitable for room mounting. Enclosure Flammability = UL94-HB		
Type	Description	Input $\pm 15 \%$	Supply	Operation	Consumption	Time Delay	Mounting	Enclosure
ERA-230	1 Channel	$1 \times 230 \mathrm{VAC}$		Light \& Buzzer	70 mA	-	Flush	IP40
ERA-10-1	1 Channel	$1 \times 0-10 \mathrm{VDC}$	24VAC/DC	Light \& Buzzer	70 mA	0-30s adj.	Flush	IP40
ERA-24-1	1 Channel	$1 \times 24 \mathrm{VAC} / \mathrm{DC}$		Light \& Buzzer	70 mA	0-30s adj.	Flush	IP40
ERA-10-2	2 Channel	$2 \times 0-10 \mathrm{VDC}$	24VAC/DC	Light \& Buzzer	70 mA	0-30s adj.	Flush	IP40
ERA-24-2	2 Channel	$2 \times 24 \mathrm{VAC} / \mathrm{DC}$		Light \& Buzzer	70 mA	0-30s adj.	Flush	IP40
ERA-10-4	4 Channel	$4 \times 0-10 \mathrm{VDC}$	24VAC/DC	Light \& Buzzer	70 mA	0-30s adj.	Flush	IP40
ERA-24-4	4 Channel	$4 \times 24 \mathrm{VAC} / \mathrm{DC}$		Light \& Buzzer	70 mA	0-30s adj.	Flush	IP40

DIMENSIONS

ERA..

ACCESSORIES:

EE-BP5 Surface mounting backbox for ERA..

WIRING

Drawing shows input terminals, links \& time delays for all versions. These vary according to the model ordered.

ERA-230

Alarm condition is indicated by the LED and buzzer switching on.
Pressing the mute button switches off the buzzer.
The LED only switches off when the fault is rectified.

ERA-10/24

Link J1 - J4 settings: If the alarm $\begin{array}{lr}\text { If the alarm } & 24 \mathrm{~V} \\ \text { input is a } 24 \mathrm{~V} \\ \text { signal, position } & : 8 \\ \text { links here: } & : 8 \\ & \end{array}$

If the alarm input is a rising 0-10VDC signal, position links here:
f the alarm input is a falling 10-OVDC signal, position links here:

For $24 \mathrm{VAC} / \mathrm{DC}$ alarm wire 0 V and the 24 V switched inputs to $\mathrm{CH} 1, \mathrm{CH} 2$, etc.
For $0-10 \mathrm{VDC}$ alarm wire 0 V and +24 V and all $0-10 \mathrm{VDC}$ inputs to $\mathrm{CH} 1, \mathrm{CH} 2$, etc.
Fit link to $0-10$ or 24 V according to input required. For $0-10 \mathrm{vdc}$ the switch point is adjustable.
If the buzzer is not required, remove the SOUND link J 5 .
If using $0-10 \mathrm{vdc}$ input the unit can be set to switch on rising or falling signal via the links $\mathrm{J} 1-\mathrm{J} 4$.
The time delay allows a time period before the unit switches on thus preventing nuisance switching.
Set to zero if not required. Alarm condition is indicated by LED and Buzzer switching on.
Pressing the mute button switches off the buzzer.
The LED only switches off when the input returns to normal.
Terminals $0.5-2.5 \mathrm{~mm}$ rising clamps Min signal cable size $7 / 0.2 \mathrm{~mm}$ Max length 100 m .
Screened cable is recommended. The screen should be earthed at controller end only. Keep control signal wires away from power cables/units which may cause interference.

EPX..

DIMENSIONS

EPX..

ACCESSORIES:
EE-BP5 Surface mounting backbox for EPX..

WIRING:

EPX..

Select the run time required by repeatedly pressing the HOURS button and the corresponding LEDs will turn on. These LEDs will also turn off in sequence during the countdown period. Push the ON/OFF button, contacts C-NO close and the ON/OFF LED turns on to indicate run time has been extended.

When the selected time period expires, contact C-NO opens and the ON/OFF LED turns off.
The ON/OFF button can be pressed at any time to stop the extended run time - contact C-NO will open and all LEDs will turn off.

EMERGENCY PRODUCTS

PLANT EXTENSION UNIT

EXU..

| This unit can be wired to a time switch or other |
| :--- | :--- | :--- | :--- |
| device to extend the normal running time of a |
| system. |

For adjustable run time 0-7 hours, see model EPX..

DIMENSIONS

EXU..

ACCESSORIES:

EE-BP5 Surface mounting backbox for EXU..

WIRING:
EPX..

When the momentary action push button is pressed a circuit is made.
This can be wired to a time switch which extends the plant running time.
The NEON Light can be wired to show that running time has been extended.

FIREMAN SWITCH
EAM.. EKFM

| Fireman Switch for remote override |
| :--- | :--- | :--- | :--- | :--- |
| of ventilation plant in the event of |
| fire. All standard types have red |
| colour enclosures. |

Special Versions available on request.

DIMENSIONS

EFM-1

EKFM

EFM-4

EFM-5

ACCESSORIES:

* EE-BP6 - Surface mounting backbox for EFM-1

EE-KF - Replacement Lid for EKFM 4 per packEFM-1

EFM-1

WIRING:

EFM-4/5

EMERGENCY PRODUCTS

DUCT SMOKE DETECTORS

INSTALLATION:

Fit the sampling tube across the entire width of the duct.
The tube can be cut to the required length. Minimum duct width 200mm. FIT THE PLUG PROVIDED TO THE END OF THE SAMPLING TUBE. The holes in the sampling tube should face towards the air flow. $\Delta \mathrm{P}$ between input \& exhaust tubes should be between 0.024 to 3.0 mbar An exhaust tube is provided - this must not be blocked. The tubes \& air flow direction can be reversed.

To prevent false alarms, avoid mounting in areas of extreme high/low temperature, in areas of high humidity or a dusty environment. The unit should be mounted in a straight duct away from bends or other deflections or turbulent areas.

OPERATION:

Normal / Power On	Pilot light on. Fault contacts 14-15 close. Alarm light off. Alarm contacts 8-9 \& 11-12 open.
Smoke / Power On	Pilot light on. Fault contacts 14-15 close. Alarm light on. Alarm contacts 8-9 \& 11-12 close.
Detector Out/ Power Off	Pilot light off. Fault contacts 14-13 close. Alarm light off. Alarm contacts 8-9 \& 11-12 open.
Testing	By keeping the reset/test button depressed a smoke condition is simulated.
Resetting	Allow approximately 5 minutes for the smoke to clear from the detector head and then press and release
	the reset/test button. The unit returns to a normal condition.

MAINTENANCE: Periodically clean the tubes \& detector head by vacuuming or blowing with compressed air. Do not use chemicals.

RAIN / WATER / LEAK DETECTOR
EW..

Detects plant ro etc. DO fuels. A operati degrad	onductive non cor s, boiler houses, OT use with com sensor excitation which eliminates n problems fou	ive liquid/wa der floors, ro tible liquids ie sed for reliab sensor ith DC syste	EW-0			Volt free contacts Max ambient $70^{\circ} \mathrm{C}$ Adjustable sensitivity LED indication - light ON when the sensor is wet.			
Type	Unit	$\begin{array}{r} \text { Supply } \\ \pm 15 \% \\ \hline \end{array}$	$\begin{gathered} 230 \text { VAC } \\ \text { SPDT } \\ \hline \end{gathered}$	Power Consumption	EW-01	Sensors		Mounting	Enclosure
EW-230	Switch unit	230VAC	10(3)A	$<2.5 \mathrm{VA}$	10 in paralle		6	Din Rail	IP00
EW-24	Switch unit	24VAC	10(3)A	$<1.4 \mathrm{VA}$	10 in paralle Max cable	switch	$\stackrel{6}{6}$	Din Rail	IP00
EW-01	Probe Sensor	For use with	ve switch unit	2 wire	Box can be	s location		IP40	
EW-03	Cable Sensor	For use with	ve switch unit	2 wire	3 mm dia (Ma	O	RDER	ETRE	IP00
EW-06	Rain Sensor	For use with	ve switch unit	4 wire	2 sensor \& 2 24VAC Tran	24VAC ble)	watt		IP65

DIMENSIONS

EE-M1T Enclosure for EW-230 and EW-24

EW-01

IP65

ACCESSORIES:
Dims : $125 \mathrm{H} \times 75 \mathrm{~W} \times 75 \mathrm{D}$

WIRING:

EW-230 / EW-24

Sensor Dry = C - NC, Sensor Wet = C - NO

EW-01

Use the 2 bare metal wires as shown. Do NOT connect the 2 PVC coated wires.

Before laying the cable ensure damage has not been caused by handling - make a continuity test across the 2 bare metal wires which should be open circuit.

DO NOT USE SCREENED CABLE.

EW-06

Polarity is not important

INSTALLATION: Terminals $0.5-2.5 \mathrm{~mm}^{2} \mathrm{Max}$ combined length 200 m including sensor cable. Sensitivity may need reducing with long runs. DO NOT USE SCREENED CABLE. SENSOR CABLE MAY BE EXTENDED USING STANDARD PVC CABLE 7/0.2mm

EW-230/24 With power on and sensor connected, adjust sensitivity until LED is on, then turn back until LED just switches off. Short circuit the sensor at the furthest point from the switching unit. The LED and relay should switch on. To short circuit the sensor, press wet fingers or tin foil on to the sensor.

EW-01 The switch operates when the liquid touches both probes.
EW-03 The cable senses at any point along its entire length. Dirt on the cable can affect the switching. Fix the cable into position using plastic clips. Separate the two bare metal wires \& connect them to the switching unit via standard 2 core unscreened PVC cable. DO NOT connect the 2 sensor PVC coated wires to the switching unit. Insulate any metallic parts before laying the sensor cable.

EW-06 The heater can be used to dry the surface after rainfall and to prevent false alarms when dew forms.
Mount the unit at approx 45° to allow rain to fall off. Keep the sensor grid clean and protect from birds.

EMERGENCY PRODUCTS

CONDENSATION SENSOR CHILLED CEILINGS / BEAMS

ECB-02		
Used to prevent 'indoor rain' with chilled beam / ceiling systems etc by detecting the early onset of condensation. Condensation is detected by a specially treated sensing element fixed directly to an aluminium sensing plate.		Volt free contacts Max ambient 0-60 C Accuracy $\pm 3 \%$ Screw Terminals 0.5-2.5mm For chilled ceilings recommended setting is approx 80\% Enclosure Flammability = UL94-V0
Type Description	Operation	$24 V$ Enclosure SPDT
ECB-02 Switch \& sensor	loses on detection of moisture	Iry. 5 (2)A A 30

DIMENSIONS

ECB-02

The set point adjuster is under the cover

WIRING

ECB-02

On detection of condensation contacts 1-2 open and 1-4 close.

INSTALLATION: The unit should be mounted directly onto the coldest part of the pipe/beam.
The unit can be fixed into position by using the cable ties around the mounting bracket. Ensure that good thermal contact is maintained between the sensing plate and the pipe/beam. Do not allow any space between the contact area.

EHR.. EHD..

To monitor humidity in rooms or ducts and switch extract fans, alarms, humidifiers or de-humidifiers etc in the event of high or low humidity level. Any combination of humidifying or de-humidifying is possible.						Volt free contacts Max. air velocity $15 \mathrm{~m} / \mathrm{s}$ Terminals $0.5-2.5 \mathrm{~mm}^{2} \quad$ Accuracy $\pm 3 \% \mathrm{RH}$ Media Temp. $0-60^{\circ} \mathrm{C} \quad 0-100 \%$ RH non-condensing. Sensing element - Specially treated plastic strands which do not require regeneration. EHR.. If humidity level exceeds 85% RH, a low voltage supply is recommended. Not suitable for aggressive dirty or dusty media. Enclosure Flammability: EHR.. $=$ UL94-HB EHD.. $=$ UL94-V0		
Type	Mounting	Stages	Range \% RH	Difff. per Stage	Diff. between Stages	$\begin{gathered} \hline \text { 230VAC } \\ \text { SPDT } \end{gathered}$	Adjustment	Enclosure
EHR-1	Room	1	30/100	4\%	-	5(2)A	Concealed	IP30
EHR-2	Room	2	30/100	4\%	2/15\% adj.	$2 \times 5(2) A$	Concealed	IP30
EHR-1V	Room	1	30/100	4\%	-	5(2)A	Knob	IP30
EHR-2V	Room	2	30/100	4\%	2/15\% adj.	$2 \times 5(2) A$	Knob	IP30
EHD-1	Duct	1	30/100	4\%	-	15(4)A	Concealed	IP54
EHD-1W	Duct	1	30/100	4\%	-	15(4)A	Concealed	IP65
EHD-2	Duct	2	30/100	4\%	3/18\% adj.	$2 \times 15(4) \mathrm{A}$	Concealed	IP54

DIMENSIONS
EHR..
EHD..

ACCESSORIES:

EE-RAD Radiation Weather shield for EHD
To protect from direct sunlight/weather conditions. Install vertically as shown only

WIRING:

EHR-1

Humidity rise to scale setting - contact 1-4 close.
Humidity fall (diff) - contact 1-2 close.
Humidifying Only : Contacts 1-2
Dehumidifying Only: Contacts 1-4

EHR-2

Stage 1 - humidity rise to scale setting contact 1-3 close 1-2 open.
Stage 2 - humidity rise above neutral zone, contact 4-6 close 4-5 open.
Humidifying Only: Contacts 1-2 \& 4-5
Dehumidifying Only: Contacts 1-3 \& 4-6
Hum \& Dehum: Hum stage 1 \& De-hum stage 2

EHD-1

Humidity rise to scale setting - contact 1-2 close. Humidity fall (diff) - contact 1-4 close.

EHD-2

Stage 1-humidity rise to scale setting contact 1-2 close 1-4 open. Stage 2 - humidity rise above neutral zone contact 1-2 close 1-4 open.

HUMIDITY \& TEMPERATURE TRANSMITTERS 0-10VDC / 4-20MA ROOM / DUCT
EHRT.. EHDT.

These products can be used to monitor humidity or humidity + temperature inside rooms or ducts and give a $0-10 \mathrm{vdc} / 4-20 \mathrm{~mA}$ output signal linear across the measuring range. The humidity sensor is capable of remaining stable in saturated conditions 100\% RH for short periods. Suitable for use in HVAC \& BMS systems.							Humidity.. 0-100\% RH non-condensing. Accuracy <2\%RH Linearity and reproducability $<0.5 \%$ RH at 25 C Long term stability <2\%RH, 12 months Temperature.. Accuracy $<1^{\circ} \mathrm{C}$ Linearity $<0.5 \%$ Max media -20/+70 ${ }^{\circ} \mathrm{C}$ Enclosure Flammability EHRT.. UL94-HB EHDT.. UL94-V0		
Type	Mounting	Range \%RH		Range ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & \text { Supply } \\ & \pm 15 \% \end{aligned}$	Output Signal	Load	Consumption mA	Enclosure
EHRT-2	Room	0/100		-	24VAC/DC	0-10vdc	$>10 \mathrm{~K} \Omega$	25	IP30
EHRT-3	Room	0/100		-	24VDC	4-20mA loop	< 600Ω	30	IP30
EHRT-4	Room	0/100	\&	-10/+50	24VAC/DC	$2 \times 0-10 \mathrm{vdc}$	$>10 \mathrm{~K} \Omega$	50	IP30
EHRT-5	Room	0/100	\&	-10/+50	24VDC	2x 4-20mA loop	< 600Ω	60	IP30
EHDT-6	Duct	0/100		-	24VAC/DC	0-10vdc	$>10 \mathrm{~K} \Omega$	25	IP65
EHDT-7	Duct	0/100		-	24VDC	24VDC	$<600 \Omega$	30	IP65
EHDT-8	Duct	0/100	\&	-10/+50	24VAC/DC	$2 \times 0-10 \mathrm{vdc}$	$>10 \mathrm{~K} \Omega$	50	IP65
EHDT-9	Duct	0/100	\&	-10/+50	24VDC	2x 4-20mA loop	< 600Ω	60	IP65

OPTIONAL NTC/PT sensor for two wire temperature resistance output. Available on EHRT-2/3 and EHDT-6/7 models only Add suffix of sensor required 10K3A1 10K4A1 PT100 PT1000 etc. ie EHRT-2/10K3A1/A, EHDT-6/10K3A1

DIMENSIONS

Can be mounted on square or round outlet box In areas of high humidity use the duct model and mount with probe facing downwards Not suitable for dirty, dusty or aggressive media.

ACCESSORIES:

EE-RAD Radiation/Weather shield for EHD To protect from direct sunlight/weather conditions. Install vertically as shown only

INSTALLATION: Min sensor / control signal cable size $7 / 0.2 \mathrm{~mm}$ Max length 100m. Keep away from power cables/units which may cause interference. Screened cable is recommended. The screen should be earthed at controller end only.

Terminals $0.5-2.5 \mathrm{~mm}$

LIGHT LEVEL TRANSMITTERS 0-10VDC

ELT..

DIMENSIONS

ELT-4W

WIRING:

ELT..

Lux range
selector link

$10-2000$	\bullet	\bullet
$10-4000$	\bullet	\bullet
$10-10000$	\bullet	\bullet
$10-20000$	\bullet	\bullet

INSTALLATION: Terminals $0.5-2.5 \mathrm{~mm}$
Min sensor / control signal cable size $7 / 0.2 \mathrm{~mm}$
Max length 100 m
Screened cable is recommended
The screen should be earthed at controller end only
Keep sensor/control signal wires away from power cables/units which may cause interference.

P.I.R. OCCUPANCY DETECTORS CEILING MOUNTED

EO-C.. 1

| Lese units are used for lighting control and |
| :--- | :--- | :--- | :--- |
| Thes |
| designed to be installed into ceiling tiles. They can |
| be connected to control circuits or BMS systems. |
| The EO-CL1 has an in-built adjustable lux sensor |
| which will switch on the lighting only when ambient |
| light falls below the pre-set level and movement is |
| detected. The time delay prevents nuisance |
| switching and is reset whenever movement is |
| detected. |

INSTALLATION: Install the unit at least 1 m away from any lighting source. Do not mount onto a vibrating surface.
DO NOT MOUNT IN DIRECT SUNLIGHT OR NEAR HEAT SOURCES. In larger areas wire more switches in parallel to power the load.

Flush Mounting: The occupancy detectors may be flush
mounted through a 64 mm diameter hole in the ceiling. Use the plastic mounting bracket and clips supplied to fix the flush mounted detector.

Surface Mounting: Alternatively the detectors can be surface mounted using the optional Back Box, which may be screwed to the ceiling.

WIRING:

EO-CL1

Time Delay Setting (EO-CO \& EO-CL):
Timing is adjustable between 10secs to 30mins using the screwdriver slot labelled TIME.

LUX Setting (EO-CL only):

The LUX level can be adjusted using the screwdriver slot labelled LUX. Turning towards maximum allows the lights to come on at a higher ambient light level (set fully to maximum, lights will be activated regardless of ambient level).

On movement C-NO closes
No movement C-NO opens (after time delay)

P.I.R. OCCUPANCY DETECTORS

EO..

DIMENSIONS

EO-NF

EO-SF / EO-VF / EO-SC / EO-VC

DETECTION FIELD:

DO NOT MOUNT IN DIRECT SUNLIGHT OR NEAR HEAT SOURCES. In larger areas wire more switches in parallel to power the load.

MICROWAVE OCCUPANCY DETECTORS

INSTALLATION

Do not site within 1 m of any lighting or ventilation equipment.
Do not fix to a vibrating surface.
Site as far as possible from the surface of metal objects.

PROGRAMMING USING THE HAND SET

Parameter Name	$\begin{array}{\|l\|l} \hline \text { Default } \\ \text { Value } \end{array}$	(1) Number of Shift key presses				UHS5 Handset Graphics	Description
		$\begin{array}{\|ll\|} \hline 0 & \\ \hline \text { onnt } & 0 \\ \hline \end{array}$	$\begin{array}{\|ll\|} \hline 1 & \\ \hline 0 & 0 \\ \text { surfr } & 0 \\ \hline \end{array}$				
		Button Activation					
On / Raise		On				$\frac{1}{1}$	Turn lights on.
Off / Lower		Off				(\%)	Turn lights off.
Walk test	Off	On	Off			(\%m)	When set to On this causes a red LED flash on the sensor when it detects movement. Use this feature to check for adequate sensitivity levels.
Time Out (Time adjustment)	10 mins	$\begin{aligned} & 1,10 \& \\ & 20 \\ & \text { minute } \end{aligned}$	$\begin{aligned} & \hline 5,15 \& \\ & 30 \\ & \text { minutes } \end{aligned}$			1818	Once the detector is turned on, this value sets how long the lights will stay on once movement has ceased.
$\begin{array}{\|l\|} \hline \text { Lux on level } \\ \text { (Switch } \\ \text { level on) } \end{array}$	9	2, 5 \& 7	4,6\&9			$\text { (1/2) 8/5 } 1 / 7$	
Lux off level LSwitch (Switch level off)	9	2, 5\&7	4,6\&9			$\text { (1/2) (6/5 } \quad 1 / 7$	Lux level setting to switch the luminaires off during occupancy if the ambient light level goes above the setting (adjustable between 1 and 9). Level 9 will always keep the lights on. This setting can be used for "window row switching".
Sensitivity	9	1,5 \& 9	3,6\&8			$\begin{array}{lll} 1 / 1 & 1 / 5 & 1 / 9 \end{array}$	$\begin{aligned} & \text { Sensitivity level for detecting movement. } \\ & 1=\text { low sensitivity } \\ & 9=\text { high sensitivity } \end{aligned}$
Defauls				D		(D)	Returns the unit to the default settings.
Presence / Absence	Presence	Presence	Absence			(1/P)	Absence mode not implemented-do not use.
Shift						(1)	Use this button to select the settings in red and blue signified by the 'Shift 1' and 'Shift 2' LEDs

Point the hand set at the Sensor and send the required programming commands to the unit as shown below. Valid commands will be indicated by a green LED flash.

NOTES:

The microwave radiation emitted by these units is of extremely low power. At a distance greater than 50 mm the power density is less than 6% of the ANSI IEE C95.1-1991 power density. At a distance of 5 mm from the unit it is less than 84% of the recommended power density.

GAS DETECTOR/TRANSMITTER
EGS-...

| This range of gas detectors can be used |
| :--- | :--- | :--- |
| to detect leaks and provide an alarm |
| in general commercial and industrial |
| applications. |
| Can be used stand alone, with a BMS |
| system or with a monitor panel. |

Other gases-please enquire
Default setpoints are in accordance with www.hse.gov.uk/coshh/table1.pdf

MAINTENANCE
Keep the gas sensors energised and after installation or a period of non use energise the sensor for at least 15 mins to allow it to stabilise.
Test annually or in accordance with the local regulations as detailed in the Product Data sheet.
Do not store of install in dusty dirty environments or areas of high solvent concentration.

This range of gas sensor monitor panels can be used with EGS or ST-.. gas sensors and provide a centralised display of sensor alarm status with visual and audible alarms. By choosing the appropriate sensor and monitor panel up to 65 sensors can be accommodated.

EGD - M

EGD-M1	EGS	1	230VAC	2	orange/red led	192x100x75
EGD-M2	EGS	2	230VAC	2	orange/red led	$192 \times 100 \times 75$
EGD-M4	EGS	4	230VAC	2	orange/red led	262x255x82
EGD-M6	EGS	6	230VAC	2	orange/red led	262x255x82
ST-MON350	ST-..only	up to 32	230VAC	2	240×64 graphic Icd	232x235x60
ST-MON 350R	ST-..only	from 32 to 65 sensors	230VAC	2	240×64 graphic Icd	$232 \times 235 \times 60$

WIRING EGS SENSORS TO EGD-M.. MONITOR PANELS

WIRING ST-.. SENSORS TO ST-MON350 MONITOR PANELS

The mains supply should be via a 2pole isolating switch fused at 1 A.Use $3 \times 0.75 \mathrm{~mm}$ sq cable.
See the detailed instructions in the Product Data sheets supplied with the product.

INSTALLATION

Avoid extremely hot, cold or humid environments, strong magnetic fields or direct sunlight.

OPERATION

See the detailed instructions in the Product data sheets supplied with the product.

AIR QUALITY TRANSMITTER 0-10VDC

EAQ..

Best results are achieved within controlled media temperatures between approx. 16-28 ${ }^{\circ} \mathrm{C}$.
At lower temperatures the output voltage may increase as temperature falls. Media Limits: $0 /+50^{\circ} \mathrm{C} 0-80 \% \mathrm{RH}$ non-condensing

OPERATION:
Allow approx 30 minutes for the device to stabilise after switching on. The sensing element will self-clean any dust which may have settled during storage. On initial power up the output will be 10 vdc and this will reduce slowly during the self-cleaning process. On-site adjustments are not normally necessary. If any adjustments are required, they should only be carried out after the burn-in period, in clean air and with the time delay set to 0%. The following adjustments can then be made if necessary:

SPAN - Fit link to SET SPAN \& adjust to 8-10V indicating bad air quality.
ZERO - Fit link to RUN and adjust to OV when clean air is detected.
TIME DELAY - Set to 0\% for fast response, 100\% for slow response. This overcomes problems if the air quality changes for a short period. The response time will also be affected by air movement, temperature and contamination rates.

The transmitter output should be below $2 v d c$ when little or no contaminant is present in the air ie in periods of low or no occupancy. Dampers can therefore be set to minimum fresh air or to close at approx $2 v d c$. As the air quality worsens the output signal increases to modulate the dampers to the fresh air position or to fully open at about 8-10vdc.

INSTALLATION: Terminals $0.5-2.5 \mathrm{~mm}^{2} \quad$ Min sensor cable size $7 / 0.2 \mathrm{~mm} \quad$ Max length 100 m . Screened cable is recommended. The screen should be earthed at controller end only Keep sensor wires away from power cables/units which may cause interference.

AIR QUALITY \& GAS SENSORS

CARBON DIOXIDE TRANSMITTER 0-10VDC / 4-20MA

INSTALLATION:

ECD-R2 Install in a clean environment in an area with good air movement. Mount in g height 1.5-2m
Avoid areas of localised heat, windows, doors etc ENSURE VENT HOLES ARE FACING DOWN.

ECD-D2 Install in a clean environment in the return air duct. Position the unit away from heat sources. The holes in the tubes should face parallel to the air flow. The direction of air flow can be reversed.

SET UP USING THE MENU FUNCTION

Eight functions can be set up using the menu using the tree buttons
MENU To enter sey up or advance to the next step.
ROLL To change the programme variables.
SAVE To save to memory and advance to the next item.
Press MENU to enter the set up menu.
Out high Change the range between 1000 and 7500 ppm .
Alititude Set to local altitude.
Auto Call Corrects sensor drift - ON if varing CO2 level.
OFF if constant CO 2 leve

Out type Select 0-5VDC or 0-10VDC. If mANolt switch is set to mA then mA will be displayed.
Text
Calibrat Used for 1000ppm gas calibration.
Restore SAVe to restore defaults or MENU to exit.
Defaults
Press SAVE to exit menu.

WIND SPEED AND DIRECTION SENSORS

EWS..

Speed measurement - magnetic reed switch producing one contact closure per rotation, which is equivalent to 1.493 m travel.
Counting this over a time period produces a rate in m / s.
10000 revolutions per hour $=14930$ metres per hour $=14.93 \mathrm{Km} / \mathrm{h}=4.148 \mathrm{~m} / \mathrm{s} \quad \mathrm{m} / \mathrm{s} \times 3.6=\mathrm{km} / \mathrm{h}$.

DIMENSIONS

WIRING:

The 3 m cable can be extended using screened $7 / 0.2 \mathrm{~mm}$ wire equivalent to Belden 9503. The screen is not connected in the sensor and should be earthed at the controller end. Keep away from power cables/units which may cause interference.

[^1]
WIND SPEED / DIRECTION LEVEL

WIND SPEED \& DIRECTION SENSOR 0-10 VDC

Speed measurement - Hall Effect solid state magnetic switch activated by magnets in the cup rotor.

Supplied with the control box which converts the sensor signal to a standard 0-10 volt output signal.

[^2]
AIR VELOCITY / AVERAGING PITOT TUBES

EVP..

DIMENSIONS

EVP..

+ Senses total pressure. Holes must face air flow directly
- Senses static pressure. Rotate tube up or down towards position 'A' approx angle $36-42^{\circ}$ to obtain correct Velocity Pressure for the required Air Velocity. Velocity Pressure = Total Pressure - Static Pressure

Ensure that the arrow on the flange plate points in the direction of air flow.

CALCULATIONS:

To calculate the Air Velocity, use table below or the following equation:

Air Velocity $=\sqrt{\frac{2 \times \text { Velocity Pressure }}{1.2}}$

Example: Velocity Pressure is 62.42 Pa This equates to $\mathbf{1 0 . 2 m} / \mathrm{s}$ Air Velocity *

When velocity pressure is established, the ADP Transmitter can be selected, ie with a range of 0-100 Pa.

TABLE OF VELOCITY PRESSURE IN PASCALS AGAINST VELOCITY IN METRES PER SECOND

m / s	0	0.1	$\mathbf{0 . 2}$	$*$	0.3	0.4	0.5	0.6	0.7	0.8
0	0.00	0.01	0.02	0.05	0.10	0.15	0.22	0.29	0.38	0.49
1	0.60	0.73	0.86	1.01	1.18	1.35	1.54	1.73	1.94	2.17
2	2.40	2.65	2.90	3.17	3.46	3.75	4.06	4.37	4.70	5.05
3	5.40	5.77	6.14	6.53	6.94	7.35	7.78	8.21	8.66	9.13
4	9.60	10.09	10.58	11.09	11.62	12.15	12.70	13.25	13.82	14.41
5	15.00	15.61	16.22	16.85	17.50	18.15	18.82	19.49	20.18	20.89
6	21.60	22.33	23.06	23.81	24.58	25.35	26.14	26.93	27.74	28.57
7	29.40	30.25	31.10	31.97	32.86	33.75	34.66	35.57	36.50	37.45
8	38.40	39.37	40.34	41.33	42.34	43.35	44.38	45.41	46.46	47.53
9	48.60	49.69	50.78	51.89	53.02	54.15	55.30	56.45	57.62	58.81
$10 *$	60.00	61.21	$62.42 *$	63.65	64.90	66.15	67.42	68.69	69.98	71.29
11	72.60	73.93	75.26	76.61	77.98	79.35	80.74	82.13	83.54	84.97
12	86.40	87.85	89.30	90.77	92.26	93.75	95.26	96.77	98.30	99.85
13	101.40	102.97	104.54	106.13	107.74	109.35	110.98	112.61	114.26	115.93
14	117.60	119.29	120.98	122.69	124.42	126.15	127.90	129.65	131.42	133.21
15	135.00	136.81	138.62	140.45	142.30	144.15	146.02	147.89	149.78	151.69
16	153.60	155.53	157.46	159.41	161.38	163.35	165.34	167.33	169.34	171.37
17	173.40	175.45	177.50	179.57	181.66	183.75	185.86	187.97	190.10	192.25
18	194.40	196.57	198.74	200.93	203.14	205.35	207.58	209.81	212.06	214.33
19	216.60	218.89	221.18	223.49	225.82	228.15	230.50	232.85	235.22	237.61
20	240.00	242.41	244.82	247.25	249.70	252.15	254.62	257.09	259.58	262.09
21	264.60	267.13	269.66	272.21	274.78	277.35	279.94	282.53	285.14	287.77
22	29.40	293.05	295.70	298.37	301.06	303.75	306.46	309.17	311.90	314.65
23	317.40	320.17	322.94	325.73	328.54	331.35	334.18	337.01	339.86	342.73
24	345.60	348.49	351.38	354.29	357.22	360.15	363.10	366.05	369.02	372.01
25	375.00	378.01	381.02	384.05	387.10	390.15	393.22	396.29	399.38	402.49
26	405.60	408.73	411.86	415.01	418.18	421.35	424.54	427.73	430.94	434.17
27	437.40	440.65	443.90	447.17	450.46	453.75	457.06	460.37	463.70	467.05
28	470.40	473.77	477.14	480.53	483.94	487.35	490.78	494.21	497.66	501.13
29	504.60	508.09	511.58	515.09	518.62	522.15	525.70	529.25	532.82	536.41
30	540.00	543.61	547.22	550.85	554.50	558.15	561.82	565.49	569.18	572.89

AIR VELOCITY TRANSMITTER 0-10VDC

EAU..

DIMENSIONS
EAV..

Ensure that the air flows directly through the holes in the side of the probe. The air can enter the holes from either side.
Mount away from bends, elbows and turbulent areas. Avoid installing in areas where the temperature in the duct changes rapidly. DO NOT SUBJECT THE SENSING ELEMENT TO OILY, DIRTY, DUSTY OR MOIST MEDIA.

WIRING:

EAU..

Keep sensor/control signal wires away from power cables/units which may cause interference.

CURRENT SWITCHES FIXED SWITCH POINT

ESOL.. ESLT....

These units are powered by induction from the
monitored AC conductor which passes through
the hole/core. They sense current flow and can
monitor the operation/failure of fans, pumps,
motors etc. Simply connect 2 wires to indicate
run /fail - the normally open switch contacts close
when the setpoint is exceeded. The GNG models
incorporate dry contacts for true digital switching.

On State Volt Drop - amount of voltage which drops through the switch contacts when they are closed.
Leakage Current - amount of current leaked across the switch contacts when they are open.
Both factors are very small and generally insignificant for most applications.
If the conductor current is too low ie 0.5 A , it can be looped through the current switch more than once ie 3 loops $=1.5 \mathrm{~A}$, this also divides the maximum range by 3 .
If the conductor wire is too large, or the current too high it can be wired to the primary side of a current transformer, the secondary side then passes through the current switch hole/core.

Easy to use switches, for flow/no flow applications with dry contacts for true digital switching.
Do NOT exceed the voltage or current ratings as this will cause damage to the device.
Normally Open switch contacts close when the current flow exceeds the set point.

ESOL-GNG-200

ESLT-GNG-200

INSTALLATION: Ensure core is clean at time of installation as dirt/foreign particles may prevent correct operation.
The split core device can be opened by using a large blade screwdriver positioned in the centre of the latch.
When closing the split core ensure that the two halves are properly aligned. Pass the live conductor/wire through the core.
The solid state switch contacts can only be checked for operation when the switch circuit power is applied.
Under current indication : Belt, fan or pump failure : For normal running the current should be above the set point \& the switch contact closed. If the belt is broken, fan or pump stopped or the electrical supply fails the switch contact will open.

Over current indication : Locked rotor. For normal running the current should be below the setpoint and the switch contact should be open. When current exceeds the set point the switch contact closes providing indication of current flows above the normal full load amps.

On State Volt Drop - amount of voltage which drops through the switch contacts when they are closed.
Leakage Current - current leaked aross the switch contacts when they are open.
Both factors are very small and generally insignificant for most applications.

dimensions

ESOL-325NS

ESLT-325NSC

WIRING:

INSTALLATION: Ensure core is clean as dirt/foreign particles may prevent correct operation. If the conductor current is too low ie 0.5 A , loop through the sensor more than once, ie 3 loops $=1.5 \mathrm{~A}$, this also divides the maximum range by 3 . If the conductor wire is too large, or the current too high it can be wired to the primary side of a current transformer, the secondary side then passes through the hole/core.
Do NOT exceed the voltage or current ratings as this will cause damage to the device. Pass only the live conductor/wire through the core. Ensure link/jumper is in the correct position before switching the power on. The switch contacts are non-polarised.
The solid state switch contacts can only be checked for operation when the switch circuit power is applied.
Under current indication : Belt, fan or pump failure : For normal running the current should be above the set point \& the switch contact closed. If the belt is broken, fan or pump stopped or the electrical supply fails the switch contact will open.

Over current indication : Locked rotor. For normal running the current should be below the setpoint and the switch contact should be open. When current exceeds the set point the switch contact closes providing indication of current flows above the normal full load amps.

SET POINT ADJUSTMENT:

Factory set to minimum (adjustment fully clockwise) To increase set point, turn monitored load on, (the NO contacts will close) turn the adjustment counter-clockwise until the switch contacts open as indicated by the status LED or a voltmeter connected to the switch. Then turn adjustment clockwise until the LED comes back on or voltmeter is seen indicating contacts closed. LED is not fitted on all types. The adjustment should then be turned slightly clockwise past this point to ensure current fluctuations do not cause false conditions.

CURRENT SENSORS 0-10VDC / 4-20MA
ESOL.. ESLT..

These devices are powered by induction from				
the monitored AC conductor which passes				
through the hole/core. A 0-10vdc or 4-20mA				
output signal linear across the range is produced.				
They sense the current flow and can thereby monitor				
the operation/failure of fans, pumps,				
motors etc.				

Select the range according to the conductor current.
If the conductor current is too low ie. 0.5 A then loop through the sensor more than once ie. 3 loops $=1.5 \mathrm{~A}$ and will divide the maximum range by 3 . If the conductor wire is too large, or the current too high it can be wired to the primary side of a current transformer, the secondary side wire is then passed through the sensor core. Do NOT exceed the voltage or current ratings as this will cause damage to the device.

AIR FLOW SWITCHES

EAA..

| EAA.. detects air flow in ducts to monitor fan |
| :--- | :--- | :--- | :--- | :--- |
| operation and switches in the event of flow |
| failure. It is suitable for non-aggressive and |
| non-combustible clean air/gases. |

DIMENSIONS

WIRING:

Flow 1-2 close 1-4 open.
No flow 1-4 close 1-2 open.
When the flow is above the cut-in setting 1-2 close. When flow decreases (cut-out) 1-4 close.
Adjustment : Units are pre-set to the approx minimum setting.
Adjusting below this value may result in the switch failing to return.
The switch point is increased by turning the adjusting screw clockwise.

INSTALLATION:

Before installing push the paddle slowly, allow it to return slowly, the switch should operate. Ensure the arrow on the housing points in the direction of the flow.
Mount away from elbows, bends and other restrictions likely to cause turbulence. Upstream \& downstream of the switch should be straight for at least five times duct diameter. Do not mount on the side of a horizontal duct as the paddle weight will affect the switching. The paddle must not touch the duct or be obstructed in any way.
The paddle may be trimmed to increase the switching value.
When the unit is installed in a vertical duct with downward airflow it is
necessary to trim the paddle slightly to compensate for the weight.

LIQUID FLOW SWITCHES 15MM/22MM COMPRESSION

| The ELF-15C \& ELF-22C liquid flow switches |
| :--- | :--- | :--- | :--- | :--- |
| are suitable for use in detecting flow in a wide |
| range of applications ie. hot water, chilled |
| water, drinking water, diesel oil and up to 30\% |
| glycol systems. They are normally used to |
| monitor pump operation or switch alarms in |
| the event of flow failure. |

DIMENSIONS

WIRING:

Brown Wire Black Wire Grey Wire	Common NO Normally Open
Flow: Normally Closed	

[^3]Before installing, push the paddle and allow it to return slowly, the switch should operate.

LIQUID FLOW SWITCHES

ELF..

ELF.. detects liquid flow through chillers, boilers, pipes and other units to monitor pump operation or switch alarms in the event of flow failure ie. hot water, chilled water, diesel oil and up to 30% glycol systems. ELF-4../5.. can be used with some aggressive liquids. Not suitable for salt water.						Concealed adjustment Volt free contacts Max. ambient $70^{\circ} \mathrm{C}$ Max Media Pressure 12 bar 1" 2" 3" paddles included. Paddles can be cut to suit pipe diameter. Enclosure Flammability = UL94-V0 ELF-15C / ELF-22C with $15 / 22 \mathrm{~mm}$ compression fittings see seperate data sheet. $1 \mathrm{~m}^{3} / \mathrm{h}=0.27 \mathrm{l} / \mathrm{sec}$		
Type	Media Temp ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \hline \text { 230VAC } \\ \text { SPDT } \end{gathered}$	Operation	Media Contact Materials		Connection	Suitable for pipe dia.	Enclosure
ELF-1C	+4/110	15(8)A	Normal	Phosphor Bronze/Stainless steel/Brass		$1{ }^{\text {" BSPT }}$	1"-8"	IP54
ELF-3	+4/110	15(8)A	Sensitive	Phosphor Bronze/Stainless steel/Brass		1" BSPT	1"-8"	IP54
ELF-4	+4/110	15(8)A	Aggressive	Stainless steel		1" BSPT	1" - 8"	IP54
ELF-5	+4/110	15(8)A	Sensitive	Stainless steel		1" BSPT	1" - 8"	IP54
ELF-3W	$-30 /+110$	15(8)A	Sensitive	Phosphor Bronze/Stainless steel/Brass		1" BSPT	1" - 8"	IP65
ELF-4W	$-30 /+110$	15(8)A	Aggressive	Stainless steel		1" BSPT	1"-8"	IP65
ELF-5W	$-30 /+110$	15(8)A	Sensitive	Stainless steel		1" BSPT	1"-8"	IP65
ELF-7	+4/110	15(8)A	Normal	Phosphor Bronze/Stainless steel/Brass			3/4" Only	IP54

DIMENSIONS

ELF..

Flow: 1-2 close 1-4 open. No Flow: 1-4 close 1-2 open.

Adjustment: Units are pre-set to the approx. minimum setting. Adjusting below this value may result in the switch failing to return To increase switch point, slowly turn adjusting screw CLOCKWISE

ACCESSORIES:

EE-PS Set of 1,2 \& $3^{\prime \prime}$ paddles for ELF.
EE-6P 6" Paddle for ELF-1,2,3,4,5

INSTALLATION:

1 Before installing, push paddle \& allow it to return slowly, the switch should operate.
2 Ensure the arrow on the housing points in the direction of flow.
3 Mount at any angle from vertical to horizontal. Other positions are not recommended as particles may fall into the unit and obstruct the rod from moving freely.
4 Mount away from elbows, bends and other restrictions likely to cause turbulence.
5 Upstream-downstream of the switch should be straight for at least $5 \times$ pipe diameter.
6 Use a short neck weld socket or short branch tee, DO NOT mount in a long branch.
7 The paddle must not touch the pipe or be obstructed in any way.
8 Remove/trim paddles to suit pipe diameter.
9 EE-6P can be fitted over existing paddles for extra strength in larger pipes.

FLOW RATES:

All Flow rates indicated below are approximate and the readings have been taken with the unit mounted in a horizontal pipe. A slightly higher flow rate may be required if the unit is mounted in another position to compensate for the weight of the paddle. Example : ELF-1 pipe dia 2" On min adj. switch makes when flow increases to $3.1 \mathrm{~m}^{3} / \mathrm{h}$ and breaks when flow decreases to $2.2 \mathrm{~m}^{3} / \mathrm{h}$.

LIQUID LEVEL SWITCHES HORIZONTAL

ELL.. EL..

To monitor liquid level in tanks and switch pumps or an alarm in the event of high or low level. Two switches are required when using both high and low level or limit and alarm functions. EL-041 / 093 switches contain magnets, therefore ensure that no metal objects are present in the liquid.							Volt free contacts Max. ambient $70^{\circ} \mathrm{C}$ Liquid sp. gravity >0.75 Enclosure Flammability: $\begin{aligned} & \text { ELL.. = UL94-V0 } \\ & \text { EL.. = Metal } \end{aligned}$ Media : ELL.. Oil, Diesel, Water, Non aggressive fluids EL-041/ 093 Oil, Diesel, Water, Some aggressive fluids	
Type	Mounting Cut-in	Diff. mm	Max. Media Temp ${ }^{\circ} \mathrm{C}$	Max. Media Press. Bar	$\begin{gathered} \hline \text { 230VAC } \\ \text { SPDT } \end{gathered}$		Media Contact Materials	Enclosure
ELL-01	Horizontal	12	90	4	15(8)A	Brass/P	phor Bronze/Polypropylene	IP54
ELL-02	Horizontal	12	90	4	15(8)A	Brass/P	phor Bronze/Polypropylene	IP65
EL-041	Horizontal	12	330	25	10(5)A		Stainless steel	IP65
EL-093	Horizontal	125/550 adj.	330	25	10(5)A		Stainless steel	IP65

DIMENSIONS

ELL-01 / 02

NOTE:
LEVEL SWITCHES MUST BE MOUNTED HORIZONTALLY WITH THE ELECTRICAL ENTRY FACING DOWNWARDS.

EL-093

DRILLING DETAIL:

EL-041 DIRECT MOUNTING
EL-MF.. WELDED MATING FLANGE

Use M12 studs to project 30 mm

Accessories: WELDED MATING FLANGE for EL-041, 093

WIRING:

ELL..

$\begin{array}{lll}\text { On level rise contacts } 1-4 \text { close } & 1-2 \text { open. } \\ \text { On level fall contacts } 1-2 \text { close } & 1-4 \text { open. }\end{array}$

EL..

On level rise contacts 11-14 close 11-12 open.
On level fall contacts 11-12 close 11-14 open.

LIQUID LEVEL SWITCHES HIGH - LOW SWITCHING

| Lhese level switches are suitable for mounting |
| :--- | :--- | :--- | :--- | :--- |
| Trom the top of a tank to monitor the level of |
| liquid. The float follows the surface of the liquid |
| level. The switches within the float operate |
| according to the tilting action. |

WIRING:

EL-AL	ns.
EL-AH	1-2 close on high level. When the level decreases by about 40mm (diff) the contact opens.
EL-AHL	$1-2$ close on high level. When the level decreases by about 40 mm (diff) the contact opens. $1-3$ close on low level. When the level increases by about 40mm (diff) the contact opens.
EL-PF	1-2 close on low level until high level
EL-PE	1-2 close on high level until low level

LIQUID LEVEL SWITCHES VERTICAL

When float reaches upper adj stop C-NC close : When float reaches lower adj stop C-NO close EL-140/141 - The counter balance/weight on the arm/lever should be adjusted for correct operation.

WIRING:

EL..

On level rise contacts 11-14 close 11-12 open. On level fall contacts 11-12 close 11-14 open.

ETF..

On level rise contacts 1-3 close 1-2 open On level fall contacts 1-2 close 1-3 open.

LEVELS

LIQUID LEVEL TRANSMITTER 4-20MA ULTRASONIC

DIMENSIONS

INSTALLATION:

OPEN TANK / SUMP

CLOSED TANK

O : Origin of measurement. All measurements (distances / depths) are taken from O .
D : Dead band 500 mm .
A : Max media height for signal range. If measurement is required to the top of the tank, mount the transmitter 500 mm higher.
P : Protect the unit from sunlight.
B : Beam width $0.21 \times$ Range (R)
X : Beam must not touch any obstacles. Ensure that the beam path is uninterrupted.
Mounting :
OPEN TANK $\quad \tilde{n}$ Mount at least 0.5 m above the highest media level and 105 mm away from walls for every 1 m of media depth. CLOSED TANK ñ Mount at least 0.5 m above the highest media level. Do not mount the unit in the centre of the tank to monitor powder or granules etc. which can form into a cone shape and give inaccurate readings - in this case the unit should be mounted close to the edge as shown.
Use plastic mounting bolts. Do not over-tighten as this may cause acoustic coupling to the mounting and give false readings. The transmitter must be mounted on the gasket supplied.

LIQUID LEVEL TRANSMITTER 4-20MA ULTRASONIC

MEASUREMENT :

The unit can be set to read in either Distance or Depth mode. M : minimum distance between set points must be $>100 \mathrm{~mm}$ D : 500mm Dead band

O : Start of measurement
Distance Mode :
The 4 mA point is required to be closer to ' O ' than the 20 mA point ie $\mathrm{O}-\mathrm{T}=1 \mathrm{~m}=4 \mathrm{~mA}$ $O-B=5 \mathrm{~m}=20 \mathrm{~mA}$
At 2 m the unit will give an output of 8 mA
Depth Mode :
The 20 mA point is required to be closer to ' O ' than the 4 mA point
ie $\mathrm{O}-\mathrm{T}=1 \mathrm{~m}=20 \mathrm{~mA}$ $\mathrm{O}-\mathrm{B}=5 \mathrm{~m}=4 \mathrm{~mA}$
At $2 m$ the unit will give an output of 16 mA

INSTALLATION:
Press the following keys in sequence $M \uparrow \downarrow \uparrow \downarrow$. The display now shows 'Ent'

1. Scaling Choose either Manual or Automatic scaling.

Manual Achieved by taking measurement from O to target distance for the 4 mA \& 20 mA points.
Press E to display current setting. To change, press E again \& use the $\uparrow \downarrow$ keys to set the distance (m) for the 4 mA setting. Press E to confirm setting - unit displays 'donE' \& then the new setting. Press \uparrow. Unit now displays current 20 mA setting. To change, press E \& use the $\uparrow \downarrow$ keys to set the distance (m) for the 20 mA setting. Press E to confirm the setting. The unit displays 'donE' and then the new setting. Press M twice to enter run mode.
Automatic: Achieved by adjusting physical tank contents to the the $4 \mathrm{~mA} \& 20 \mathrm{~mA}$ points
Press \uparrow. The unit displays 'Auto'. Press E once and the display will show the 4 mA distance of media from the sensor. Press E to store the value. Press E to confirm. Unit displays 'donE' and then displays the current setting. Press \uparrow. Unit displays the 20 mA distance of media from the sensor. Press E to store the value. Press E to confirm. Unit displays 'donE' and then displays the current setting. Press M twice to enter run mode.

2. Display Selection:

Press keys in sequence $\mathrm{M} \uparrow \downarrow \uparrow \downarrow$. Unit displays 'Ent' Press $\uparrow \uparrow$. The unit now displays 'disP'. Press E.
To display depth/distance in metres : Use the $\uparrow \downarrow$ keys to display depth above 4 mA point or distance above 20 mA point in metres. Press E to confirm the setting. Unit displays 'donE'. Press M twice to enter run mode.
To display depth/distance as \% of range. Use the $\uparrow \downarrow$ keys to display depth above 4 mA point or distance above 20 mA point in metres. Press \downarrow. The unit now displays 'PerC'. Press E to confirm the setting The unit displays 'donE' Press M twice to enter run mode.

3. Lost Echo Response:

This occurs if the unit fails to receive 'good' echoes. When normal conditions resume, so do output \& display.
Press keys in sequence $M \uparrow \downarrow \uparrow \downarrow \downarrow$. Unit displays 'LE'. Press E. then $\uparrow \downarrow$ keys to select the 'lost echo' output required :Select ' 20 mA ' : drive to 20 mA OR ' 4 mA ' : drive to 4 mA OR ' 21 mA ' : drive to 21 mA OR 'hold' : holds last 'good' reading. Press E to confirm setting. The unit displays 'donE' Press M twice to enter run mode.

WIRING:
Detail showing keypad and display located under the transmitter cover

Terminals $0.5-1.5 \mathrm{~mm}^{2}$
Screened cable is recommended
Keep sensor/control signal wires away from power cables/units which may cause interference.

TROUBLE SHOOTING:

1. Unit gives 'Lost Echo' reading 'LE'
2. Reading not changing with level.
3. Reading erratic
4. Reading occasionally high when tank not full.
5. No Display / Loop current.
6. Display reads "---"" or "_ _ _ _ "
7. Display reads "Err"

Target is out of range or media is too dusty/steamy or excessive foam on liquid surface. Check tank conditions and/or re-site transmitter.
Obstruction interfering with echo ie agitator blade or tank wall. Re-site transmitter away from obstructions.
Media unsteady or within dead band. Electrical noise interference. Re-site transmitter ensuring media is 500 mm away. Check wiring.

Close range echo being detected. Acoustic coupling to mounting bracket. Re-site transmitter. Fit foam gasket and loosen mounting bolts.
Power failure. Check power supply.
Media over or under range ie outside the 4-20mA setpoints. Reset the unit. $4 \mathrm{~mA} \& 20 \mathrm{~mA}$ setpoints are within 100 mm of each other. Reset the unit.

AIR DIFFERENTIAL PRESSURE SWITCHES

EDA.. EFS..

WIRING:

On pressure rise to scale setting (range) contacts 1 On pressure fall (diff.) contacts 1-2 (C-NC) close.

EFS..

INSTALLATION:
Port $+\mathrm{P} 1 \quad \mathrm{Hl}=$ High Pressure .. connect to fan discharge or high pressure side of filter.
Port - P2 LO = Low Pressure .. connect to fan suction or low pressure side of filter.
The LP Port can be left open for fan/air flow monitoring. To monitor vacuum - connect the low pressure port to high vacuum side.
Mount vertically as shown. Units can be mounted in other positions but may need a slightly higher pressure to operate.

EPG..								
Suitable to monitor the pressure of water, gas, air or oil and switch in the event of high or low pressure conditions. Two switches must be used if both high and low pressures are to be monitored.					EPG..	Volt free contacts A filter fitted before the switch is highly recommended. Adjustment under the cover The pressure line can be formed into a U shape/syphon for media temperatures up to $300^{\circ} \mathrm{C}$. Not suitable for dirty, heavy or aggressive fluids. Ambient -20/+85 ${ }^{\circ} \mathrm{C}$ $\mathrm{mbar} \times 100=\mathrm{Pa}$ Enclosure: Zinc diecast with glass filled nylon lid All settings/differentials are approximately $+/-2 \%$ due to mechanical tolerances.		
Type	Range mbar	$\begin{gathered} \hline \text { Diff } \\ \text { mbar } \\ \hline \end{gathered}$	Max Press mbar	$\begin{gathered} \hline \text { 230VAC } \\ \text { SPDT } \end{gathered}$	Media Contact Materials	Max Media Temp ${ }^{\circ} \mathrm{C}$	Pressure Connections	Enclosure
EPG-125	5/125	2.5	500	5(2)A	Brass Beryllium C Nitrile Rubb	85	1/4" BSP Male	IP65
EPG-250	15/250	4	500	5(2)A	Brass Beryllium C Nitrile Rubb	85	1/4" BSP Male	IP65

DIMENSIONS

EPG..

WIRING:

EPG..

LIQUID PRESSURE SWITCHES

EP..

\square Suitable of water the eve Two sw pressu	onitor s oil, dies igh or must b to be	or positive pressure eam** etc \& switch in pressure conditions. sed if both high and low rolled.				* The minimum differential will gradually increase by approx 60\% as the switch setting is increased. Max. media temp. $80^{\circ} \mathrm{C}$ **The pressure line can be formed into a U shape/syphon for media temperatures up to $300^{\circ} \mathrm{C}$. Tamper proof adjustment Volt free contacts Max. ambient $70^{\circ} \mathrm{C}$ Enclosure Flammability = UL94-V2		
Type	Range Bar	$\begin{aligned} & \hline \text { Diff } \\ & \text { Bar } \end{aligned}$	$\begin{gathered} \text { Max } \\ \text { Press. Bar } \end{gathered}$	$\begin{gathered} \hline \text { 230VAC } \\ \text { SPDT } \end{gathered}$	Media Contact Materials		Pressure Connections	Enclosure
EP-2	0.1/2	* 0.07/1.9	40	16(6)A	Cast Aluminium/Nitrile		½" BSP Female	IP65
EP-4	0.2/4	* 0.15/3.7	40	16(6)A	Cast Aluminium/Nitrile		½" BSP Female	IP65
EP-8	0.5/8	* 0.3/7.5	40	16(6)A	Cast Aluminium/Nitrile		½" BSP Female	IP65
EP-16	1/16	* 0.6/15	48	16(6)A	Cast Aluminium/Nitrile		½" BSP Female	IP65
EP-4M	0.2/4	hand reset open high	40	16(6)A	Cast Aluminium/Nitrile		½" BSP Female	IP65
EP-4ML	0.2/4	hand reset open low	40	16(6)A	Cast Aluminium/Nitrile		½" BSP Female	IP65
EP-003	0.3/3	0.25/2	12	24(10)A	Brass Tin Plated/Phosphor Bronze		1/4" BSP Male	IP40
EP-008	0.5/8	0.5/5	12	24(10)A	Brass Tin Plated/Phosphor Bronze		1/4" BSP Male	IP40

DIMENSIONS

WIRING:

EP-003 / 008

EP.. On pressure rise to scale setting (range) 1-4 close EP..M Open high = Contacts 1-2 open on pressure rise EP..ML Open low = Contacts 1-4 open on pressure fall

EP-003 / 008

.. On pressure fall (diff) contacts 1-2 close.
.. Pressure must fall to allow resetting.
.. Pressure must rise to allow resetting.

SETTING:

EP-2.. 32
: Set the RED arrow FIRST to the High switch point, then set the GREEN arrow to the Low switch point. The differential is RED minus GREEN setting.

EP-003 / 008
: Set the RANGE FIRST to the High switch point ,
then set the DIFF to the Low switch point, the differential is RANGE minus DIFF setting.

LIQUID DIFFERENTIAL PRESSURE SWITCHES

EP..

SELECT A SWITCH WHICH CAN BE SET WELL BELOW THE SYSTEM DIFFERENTIAL PRESSURE.
For flow failure applications it is important to have a close switching differential as in our EP.. range.
Switches with a larger differential are generally unsuitable for this application.

ACCESSORIES:		EE-CT6	Copper tube 6 mm OD $\times 10 \mathrm{~m}$ for Pressure Switches and Transmitters
	EE-MC1 Brass Male Compression fitting for 6 mm OD tube $\times \boxtimes^{\prime \prime} \mathrm{BSP}$	Brass Male	
	Compression fitting for 6 mm OD tube $\times 1 / 4 " \mathrm{BSP}$ Male		

WIRING:

EP-113 / EP-113/ST

On pressure rise to scale setting (range) contacts 1-4 close Pressure fall (diff) contacts 1-2 close

EP-114W / EP-115W / EP-099 / EP-100 / EP-101

On pressure rise to scale setting (range) contacts 1-4 close Pressure fall (diff) contacts 1-2 close

ADJUSTMENT:

EP-113.. Remove cover \& with a screwdriver, turn the slotted wheel above the scale to the left to increase the setting.
OTHER MODELS: The adjusting nut is under the cover - Turn it slowly anti-clockwise to increase setting. Do NOT over-adjust.

AIR DIFFERENTIAL PRESSURE TRANSMITTERS 0-10 VDC / 4-20MA

Other variants on request
DIMENSIONS

SETTING RANGES	EDT-selectable		
			1
			0
Pressure range			
High	0	0	
Medium	0	1	
Low	1	0	
For the EDT..V follow the instructions inside the lid			

ACCESSORIES:

EE-BFN Brass duct flange for 6 mm OD metal tube
EE-D2 Duct kit $2 m$ EE-PH $+2 x E E-P T$ for EDA..
EE-PH15 PVC hose $5 \times 8 \mathrm{~mm} \times 15$ metres
EE-PT $\quad 70 \mathrm{~mm}$ Plastic duct adaptor for use with PVC hose
EE-TE Plastic T connector for use with PVC hose
EE-TA Plastic straight connector for use with PVC hose
EE-TY Plastic Y connector for use with PVC hose

WIRING:

EDT..

EDT..MA

Use minimum cable size of $7 / 0.2 \mathrm{~mm}$
Max cable length 100m / 0-10vdc 300m / 4-20mA Screened cable is recommended.
The screen should be earthed at controller end only. Keep away from power cables/units which may cause Interference.

INSTALLATION:

Mount vertically as shown.
Mounting with lid facing down will increase the reading by approx. 0.1 mbar . Mounting with lid facing up will decrease the reading by approx. 0.1 mbar.
Always press the RESET button after installation to zero these errors.
Port P1 + = High Pressure .. connect to fan discharge or high pressure side of filter.
Port P2 - = Low Pressure .. connect to fan suction or low pressure side of filter.
The low pressure port can be left open for fan/air flow monitoring
To monitor vacuum - connect the low pressure port to the high vacuum side.

LIQUID PRESSURE TRANSMITTERS 0-10 VDC / 4-20MA

DIMENSIONS
EWT..

Mounting at any angle is possible.

WIRING:

Min sensor / control signal cable size 7/0.2mm Keep sensor/control signal wires away from power cables/units which may cause interference.

EWT../DMA

he screen should be earthed at controller end only. Screened cable is recommended.

EWDT..

WIRING:

EWDT..

Min sensor / control signal cable size $7 / 0.2 \mathrm{~mm}$ Screened cable is recommended. Max cable length 100 m .

EWDT..MA

Keep away from power cables/units which may cause interference. The screen should be earthed at controller end only.

DAMPER / VALVE MOTORS 4NM 2 \& 3 POINT

These small motors can be fitted directly onto air damper shafts as used in HVAC systems. They are also suitable for use on control valves. The rotary action can be used to open \& close dampers, valves etc.						The motor stops automatically when the end positions are reached. Up to 5 motors can be wired in parallel. Max. ambient $-20 /+50^{\circ} \mathrm{C}$ Max angle of rotation 90° Adj. angle of rotation limiter 0-30 \& 90-60 Reversible position indication 0-10, 10-0 Noise level 40dB Manual Override Supply: $24 \mathrm{VAC} \pm 15 \% \quad 230 \mathrm{VAC} \pm 10 \%$ Enclosure Flammability = UL94-V0		
Type	Supply 50/60Hz	Operation	Aux Switch 230VAC SPDT	Run Time Approx	Torque	Damper Area Approx	Consumption VA	Enclosure
EK4-24	24VAC/DC	2 \& 3 Point	--	35 s	4Nm	$1 \mathrm{~m}^{2}$	4.1	IP44
EK4-24S	24VAC/DC	2 \& 3 Point	2×3 (1.5)A	35s	4Nm	$1 \mathrm{~m}^{2}$	4.1	IP44
EK4-230	230VAC	3 Point ONLY	--	35s	4Nm	$1 \mathrm{~m}^{2}$	5	IP44
EK4-230S	230VAC	3 Point ONLY	$2 \times 3(1.5) \mathrm{A}$	35 s	4Nm	$1 \mathrm{~m}^{2}$	5	IP44

DIMENSIONS
Anti-Rotation Bracket
DIRECT MOUNTING : Shaft size - Round 6 -16mm
150

1 off M16 male to M20 female conduit adapter included. 2 off with Aux switch models.

WIRING:

24VAC/DC - 2 \& 3 Point Contro
230VAC - 3 Point Control ONLY

2 POINT CONTROL

Clockwise	1 Neutral	2 Live
Anti-clockwise	1 Neutral	$2+3$ Live

FLOATING / 3 POINT CONTROL
Clockwise 1 Neutral 2 Live 3 open
Anti-clockwise 1 Neutral 2 open 3 Live

Auxiliary Switches

Example:
Motor anti-clockwise
21-22 closed at 10° and below.
Motor clockwise
$24-25$ closed at 80° and above

NO BACK VOLTAGE FROM SUPPLY TERMINALS
MOTOR STARTS AUTOMATICALLY AFTER MANUAL ADJUSTMENT.

SETTING:

2 x Auxiliary switches Adjustable 0-90 ${ }^{\circ}$
Manually set the motor to the required switching point \& rotate the cam wheel just over the microswitch button. Set the second switching point by repeating this using the second cam wheel.

Direction of Rotation

The direction of rotation is changed by reversing the plug

DAMPER ACTUATORS / VALVE MOTORS

DAMPER / VALVE MOTORS 4NM MODULATING

WIRING:

EK4-24M

INPUT RESISTANCE Y1 > 100K Ω

PAF for minimum positioning

LOAD RESISTANCE $U>50 K \Omega$
HE MOTOR RETURNS TO OVDC POSITION
Max length 100m
Screened cable is recommended
Terminals $0.5-2.5 \mathrm{~mm}^{2} \quad$ Min sensor cable size $7 / 0.2 \mathrm{~mm}$ The screen should be earthed at controller end only Keep sensor wires away from power cables/units which may cause interference.

SETTING:

Angle of Rotation

ACCESSORIES:

PAF Digital Positioner 0-100\% Wall Mounting

Dimensions (mm)

E08.. E16.. E24.. E32..

| | | | Up to 10 motors can be wired in parallel.
 Max. ambient $-20 /+50^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- | :--- |
| The motor stops automatically when the | | | |
| These motors can be fitted directly on | | | |
| to air damper shafts or remotely using | | | |
| linkage accessories in HVAC | | | |
| systems. They are also suitable for | | | |
| use on control valves. The rotary | | | |
| operation can be used to open and | | | |
| close dampers, valves etc. | | | |

DIMENSIONS
Anti-Rotation Bracket DIRECT MOUNTING: Shaft size - Round 10-20mm Square 10-16mm

1 off M16 male to M20 female conduit adapter included. 2 off with Aux switch models.
WIRING:

DAMPER ACTUATORS / VALVE MOTORS

DAMPER / VALVE MOTORS 0-10VDC / 4-20MA
E08..M, E16..M, E24..M, E32..M

DIMENSIONS

DIRECT MOUNTING :
Shaft size - Round $10-20 \mathrm{~mm}$ Square $10-16 \mathrm{~mm}$

PAF Digital Positioner 0-100\% Wall Mounting

DAMPER / VALVE MOTORS 0-10VDC / 4-20MA

Staefa 0-20v Phase cut E16-20M

Motor anti-clockwise 21-22 closed at 10° and below Motor clockwise 21-24 closed at 80° and above

$$
\text { INPUT RESISTANCE } \quad Y 1>100 K \Omega \quad Y 2500 \Omega \quad \text { LOAD RESISTANCE } U>50 K \Omega
$$ ON POWER CUT THE MOTOR STOPS. IF THE INPUT SIGNAL IS CUT, THE MOTOR RETURNS TO OVDC POSITION.

SPRING RETURN DAMPER/VALVE MOTORS ON-OFF/0-10VDC
ER08../ER20..

These actuators can be used to control ventilation dampers or valves on applications where safety In the event of loss of power Is critical. The motor can be mounted directly to a damper shaft or to a valve using a linkage kit. When the power is on the motor drives or modulates in one direction and when power is removed the motor springs back to the safe position.						The motor stops automatically when the end positions are reached. Up to 10 motors can be wired in parallel.		
Type	$\begin{gathered} \hline \text { Supply } \\ 50 / 60 \mathrm{~Hz} \\ \hline \end{gathered}$	Operation	Aux switch 230VAC SPDT	Motor Open (sec)	$\begin{gathered} \text { Spring } \\ \text { Close (sec) } \end{gathered}$	Torque	Damper Area approx	Enclosure IP rating
ER08-230-2	230VAC	2 wire open/c		60	21	8Nm	$2 \mathrm{~m}^{2}$	IP54
ER08-230-2S	230VAC	2 wire open/c	$2 \times 5(1.5) \mathrm{A}$	60	21	8Nm	$2 \mathrm{~m}^{2}$	IP54
ER08-24-2	24VAC/DC	2 wire open/c		150	22	8Nm	$2 \mathrm{~m}^{2}$	IP54
ER08-24-2S	24VAC/DC	2 wire open/c	$2 \times 5(1.5) \mathrm{A}$	150	22	8Nm	$2 \mathrm{~m}^{2}$	IP54
ER08-24M	24VAC/DC	0-10VDC/4-2		150	22	8Nm	$2 \mathrm{~m}^{2}$	IP54
ER08-24MS	24VAC/DC	0-10VDC/4-2	$2 \times 5(1.5) \mathrm{A}$	150	22	8Nm	$2 \mathrm{~m}^{2}$	IP54
ER20-230-2	230VAC	2 wire open/c		57	15	20 Nm	$4 \mathrm{~m}^{2}$	IP54
ER20-230-2S	230VAC	2 wire open/c	$2 \times 5(1.5) \mathrm{A}$	57	15	20 Nm	$4 \mathrm{~m}^{2}$	IP54
ER20-24-2	24VAC/DC	2 wire open/c		57	15	20 Nm	$4 \mathrm{~m}^{2}$	IP54
ER20-24-2S	24VAC/DC	2 wire open/c	$2 \times 5(1.5) \mathrm{A}$	57	15	20Nm	$4 \mathrm{~m}^{2}$	IP54
ER20-24M	24VAC/DC	0-10VDC/4-2		150	26	20 Nm	$4 \mathrm{~m}^{2}$	IP54
ER20-24MS	24VAC/DC	0-10VDC/4-2	$2 \times 5(1.5) \mathrm{A}$	150	26	20Nm	$4 \mathrm{~m}^{2}$	IP54

DIMENSIONS

ER-08...

WIRING: Electrical Connections- 1.2 m flying lead.

ER-08/ER20-24

ER08/ER20-230

ER08..M/ER20-.../M

Auxiliary switch wiring (if Fitted)

ADJUSTMENTS:

Setting the auxiliary switches

The 10S and 20S models include two integral auxiliary switches with a switch adjuster accessible on either face of the actuator. The nominal factory setting for auxiliary switch S1 is 11° closing, and the nominal factory setting for auxiliary switch S 2 is 81° opening.
The switch point of auxiliary switch S1 is fixed.
The switch point of auxiliary switch S 2 is independently and continuously adjustable from 25° to 95°.
The switching position can be manually changed to any required position by turning the ratchet

Direction of rotation

Side A Spring return counter clockwise direction
Side B Clockwise direction

PLEASE NOTE

DAMPER ACTUATORS / VALVE MOTORS

WEATHERPROOF VALVE MOTOR COVER
EE-VMC

dIMENSIONS

INSTALLATION:

Fit the cover over the valve motor. Care must be taken to ensure that the cover is adequately sealed to protect from weather conditions. Due to the nature of the fitting and to allow for electrical cables the bottom part of the cover cannot be fully sealed. Therefore the best protection will be provided with the cover opening facing downwards. Use cable ties and sealing tape if necessary.

MOUNTING INSTRUCTIONS FOR LINKAGES

EE-4RD / EE-6RD

Close the valve by rotating the spindle fully clockwise. The valve is closed when the line on valve stem points in line with the valve body.

Mount the bracket onto the valve body using the bolts provided.

Slide the sleeve onto the valve spindle. DO NOT clamp the motor onto the valve spindle without this sleeve.

Manually close the motor by turning it clockwise and screw it onto the bracket using the screws provided.

Closed

EE-4ESB

Fit the mounting bracket onto the valve body with the two M8x10 bolts.
Fit the valve coupling onto the valve spindle aligning the ' D ' flat towards the required closed port.
Fit the motor over the valve coupling. The D flat on the valve spindle indicates the closed port.

To change the direction of rotation remove the 'U' bolt assembly/coupling from the motor by releasing the circlip on the underside and reverse the adaptor sleeve.

Sleeve splines up = clockwise
Sleeve splines down = anticlockwise
The actuator and mounting bracket can be fitted in any position to rotate the valve shoe between the centre port and either one of the other two ports.

VALVES / LINKAGES

BALL VALVES 2 WAY
EB..

These 2 way Ball Valves are suitable for use in heating and air conditioning applications to control the flow of chilled water, hot water and up to 30% glycol in closed circuit systems. In open circuits ie mains water or cooling, mineral deposits will impair the operation.				EB. 2 A to $2 \mathrm{H}-$ Body $=$ Brass Ball : Brass Nickel Plated Valve Stem Gasket : Rubber EPDM Flanged valves to PN16 Full Bore Passage EB..FL -Body = Bronze Ball Gasket : PTFE Rotary travel 90° The motor Part Number must be clearly specified to match each valve ordered. Supplied complete with mounting bracket for the motor. Select motor type E08..E16..E24..E32.. from separate data sheet.			
Type	Size	$\begin{aligned} & \mathrm{Kvs} \\ & \mathrm{~m}^{3} / \mathrm{h} \\ & \hline \end{aligned}$	Max Diff Pressure Bar	Max Pressure Bar	Media Temp ${ }^{\circ} \mathrm{C}$	Select	Motor
EB15-2A 15 mm	½" BSP Female	16.2	6	16	2-110	E08..	ER08..
EB20-2B 20 mm	3/4" BSP Female	26.5	6	16	2-110	E08..	ER08..
EB25-2C 25 mm	1" BSP Female	47	6	16	2-110	E08..	ER08..
EB32-2D 32 mm	1114" BSP Female	70	6	16	2-110	E16..	ER20..
EB40-2E 40 mm	1½" BSP Female	145	6	16	2-110	E16..	ER20..
EB50-2F 50 mm	2" BSP Female	191	6	16	2-110	E16..	ER20..
EB65-2G 65mm	2½" BSP Female	340	6	16	2-110	E24..	ER20..

DIMENSIONS

EB..2A..2H

	A	B	C	D
EB15-2A	73	17	31	80
EB20-2B	84	21.5	35.5	84.5
EB25-2C	95	26	40	167
EB32-2D	107	30.5	46.5	107
EB40-2E	119	38.5	58	178
EB50-2F	138	47.5	97.5	142.5
EB65-2G	164	60	93	133
EB80-2H	176	67	100	140

Install the valve with the spindle at any angle vertical to 30° above horizontal.

BALL VALVES 3 WAY

EB..

These 3 way Ball Valves are suitable for use in heating and air conditioning applications to control the flow of chilled water, hot water and up to 30% glycol in closed circuit systems. In open circuits ie mains water or cooling towers, mineral deposits will impair the operation. For diverting applications install in the return pipe only. For mixing applications install in the flow pipe. There must be 2 inlets and 1 outlet stream at all times. Reversal of this will cause vibration and water hammer.					EB..		Body : EB..TA..LG = Brass Body : EB.. FL Flange: Cast Iron Ball : Brass Nickel Plated Ball Gasket : PTFE Valve Stem Gasket : Rubber EPDM Rotary travel : 90° Flange valves to PN16 Full Bore Passage Tight Shut-off		
Type		Size	$\begin{aligned} & \text { Kvs } \\ & \mathrm{m}^{3} / \mathrm{h} \end{aligned}$	Max Diff Pressure Bar	Max Pressure Bar	Port Position Table	Media Temp ${ }^{\circ} \mathrm{C}$	Select	Motor
EB15-3TA	15 mm	½" BSP Female	13.4	6	16	1	2-110	E08..	ER08..
EB20-3TB	20 mm	$3 / 4$ " BSP Female	16.5	6	16	1	2-110	E08..	ER08..
EB25-3TC	25mm	1" BSP Female	18	6	16	1	2-110	E08..	ER08..
EB32-3TD	32 mm	1114" BSP Female	26	6	16	1	2-110		ER20..
EB40-3LE	40mm	11⁄2" BSP Female	48.5	6	16	2	2-110		ER20..
EB50-3LF	50mm	2" BSP Female	64.5	6	16	2	2-110		ER20..

Supplied complete with mounting bracket for the motor.
The motor Part Number must be clearly specified to match each valve ordered.
Select motor type E08..E16..E24..E32.. from separate data sheet.

DIMENSIONS

ACCESSORIES:
EE-7EB Linkage Kit with ER-08.. spring return actuator $15-32 \mathrm{~mm}$
EE-8EB Linkage Kit with ER-20.. spring return actuator $40-65 \mathrm{~mm}$

VALVES / LINKAGES

LIFT \& LAY / SEAT VALVES 2 \& 3 WAY
MK.. MKDN..

DIMENSIONS

VALUE	SIZE	W	L	B	H	D
MK15	$1 / 22^{\prime \prime}$	102	80	55	289	
MK20	$3 / 4 " 1$	102	80	55	289	
MK25	$1^{\prime \prime}$	102	90	60	289	
MK32	$11 / 4 "$	102	110	65	289	
MK40	$11 / 2^{\prime \prime}$	102	110	65	289	
MK50	$2^{\prime \prime}$	102	150	85	294	
MKDN50	50 mm	102	230	100	309	165
MKDN65	65 mm	102	291	120	344	185
MKDN80	80 mm	102	312	130	354	200
MKDN100	10 mm	102	350	150	400	220

ACCESSORIES:

Suitable for use with E08.. E16.. motors ONLY
Suitable for use with E16.. motors ONLY
Suitable for use with E16.. motors ONLY
For Spring Return ER08 motors ONLY
For Spring Return ER20 motors ONLY
For Spring Return ER20 motors ONLY

EXAMPLES:

TYPICAL APPLICATIONS

VALVE
Valve stem UP
Valve stem DOWN
B to $A B$ open

A to $A B$ open

For 2 port valves the bottom port must be blanked - Reduce ΔP Install the valve with the spindle at any angle vertical to 30° above horizontal.

ROTARY VALVES 2 \& 3 WAY

A range suitable fo circuit heatis Media tem In open c etc. mine The position flat on the	ary valve verting or applicat rature $5^{\circ} \mathrm{C}$ ts ie main eposits w of the sho ndle.	5 mm ixing s. o 110 water impa is alw	to 150 mm water in closed C cooling towers the operation. ys opposite the		G..			F.. val Mater 3AB.. 3AC.. The va spindl above All leak differe	ged to Brass Cast Brass Stainl be inst angle izontal es are ssure	spindle. the 30° at a
Type		Size		$\begin{gathered} \mathrm{Kvs} \\ \mathrm{~m}^{3} / \mathrm{h} \\ \hline \end{gathered}$	Leak Mixing	\% Kvs Diverting	Max Static Pressure	4Nm	Select Motor	Spring Return
3AB15-25	15 mm	1/2"	BSP	2.5	<0.2\%	<0.2\%	10 Bar	EK4.	E08..	ER08..
3AB20-4	20 mm	3/4"	BSP	4	<0.2\%	<0.2\%	10 Bar	EK4.	E08..	ER08..
3AB20-63	20 mm	$3 / 4 "$	BSP	6.3	<0.2\%	<0.2\%	10 Bar		E08..	ER08..
3AB25-8	25 mm	$1{ }^{\prime \prime}$	BSP	8	<0.2\%	<0.2\%	10 Bar		E08..	ER08..
3AB25-12	25mm	$1{ }^{\prime \prime}$	BSP	12	<0.2\%	<0.2\%	10 Bar		E08..	ER08..
3AB32-15	32mm	$11 / 4 "$	BSP	15	<0.2\%	<0.2\%	10 Bar		E08..	ER08..
3AC20	20mm	$3 / 4 "$	BSP	8	<1\%	<0.5\%	10 Bar		E08..	ER08..
3AC25	25mm	$1{ }^{\prime \prime}$	BSP	12	<1\%	<0.5\%	10 Bar		E08..	ER08..
3AC32	32 mm	$11 / 4 "$	BSP	18	<1\%	<0.5\%	10 Bar		E08..	ER08..
3AC40	40 mm	$11 / 2 "$	BSP	24	<1\%	<0.5\%	10 Bar		E16..	ER20..
3AC50	50mm	2 "	BSP	40	<1\%	<0.5\%	10 Bar		E16..	ER20..
3F50	50 mm	2"	Flanged	60	<1\%	<0.5\%	6 Bar	EK4.	E16..	ER20..
3F65	65mm	21/2"	Flanged	90	<1\%	<0.5\%	6 Bar		E16..	ER20..
3F80	80 mm	$3{ }^{\prime \prime}$	Flanged	150	<1\%	<0.5\%	6 Bar		E16..	ER20..
3F100	100 mm	4"	Flanged	225	<1\%	<0.5\%	6 Bar		E16..	ER20..
3F125	125 mm	$5{ }^{\prime \prime}$	Flanged	280	<1\%	<0.5\%	6 Bar		E16..	ER20..
3F150	150 mm	$6 "$	Flanged	400	<1\%	<0.5\%	6 Bar		E16..	ER20..

ORDER VALVE + LINKAGE + MOTOR - SEE DATA SHEET ON MOTORS. For 2 ports - blank the middle port - reduce $\triangle P$
On 3AB.. and $3 A C$.. for 360° rotation remove the red disc under the knob

BUTTERFLY VALVES

RD..

Typical Application

For use in low pressure hot water (LPHW) heating systems to prevent water flow through unfired boilers in a multi-boiler installation. RD.. valves can also be used as zone valves where slight leakage in the closed position is acceptable.
RDP.. valves can be used on applications which require shut off ie. hot water, chilled water and up to 30% glycol systems.

Operation

When installed in a boiler return pipeline and the system requires the boiler to operate, a control signal/changeover contact can be used to motor open the valve and allow water to flow through the boiler.
The burner can then operate under the control of the boiler thermostat. A motor with auxiliary switches can be used to ensure that the valve is open before the burner operates.

Installation: Install the valve with the spindle at any angle from vertical to 30 degrees above the horizontal plane.

MOTORISED SPRING RETURN VALVES 2 \& 3 PORT

EZV..

2 \& 3 zoning water, systems Supplied	g return valves ing in closed cir ater \& up to 30 lete with motor	it hot glycol	EZV-2..		4	ORDER AUXI Media temp. Max. pressure Consumption Max ambient Materials: bra for 100\% shu Wiring cable Auto/Manual Replaceable	VITCH SEPA $0^{\circ} \mathrm{C}$ rubber ball/	
Type	Connection	Max Diff Press Bar	$\begin{aligned} & \mathrm{Kvs} \\ & \mathrm{~m}^{3} / \mathrm{h} \end{aligned}$	Supply $\pm 10 \%$	Motor Open	Spring Close	Application	Enclosure
EZV-211	1/2" BSP	0.90	6.0	230VAC	10s	4 s	Zone	IP20
EZV-212	15 mm comp.	0.90	6.0	230VAC	10s	4 s	Zone	IP20
EZV-213	$3 / 4$ " BSP	0.90	7.0	230VAC	10s	4 s	Zone	IP20
EZV-214	22 mm comp.	0.90	7.0	230VAC	10s	4 s	Zone	IP20
EZV-215	1" BSP	0.90	9.0	230VAC	10s	4 s	Zone	IP20
EZV-216	28mm comp.	0.90	9.0	230VAC	10s	4 s	Zone	IP20
EZV-311	1⁄2" BSP	1.54	6.6	230VAC	20s	6 s	Diverting	IP20
EZV-312	15 mm comp.	1.54	6.6	230VAC	20s	6 s	Diverting	IP20
EZV-313	$3 / 4$ " BSP	1.54	7.8	230VAC	20s	6 s	Diverting	IP20
EZV-314	22 mm comp.	1.54	7.8	230VAC	20s	6 s	Diverting	IP20
EZV-315	1" BSP	0.62	12.6	230VAC	20s	6 s	Diverting	IP20
EZV-316	28 mm comp.	0.62	12.6	230VAC	20s	6 s	Diverting	IP20
EZV-M1	Auxiliary switch for EZV..		230VAC 3(1)A SPST	The volt free contact closes when the valve is fully open				

DIMENSIONS

EZV-2..
EZV-3..
Install the valve with the motor at any angle vertical to 30° above the horizontal plane.

Type	D	E
EZV-311,312,313,314	79	125
EZV-315,316	84	130

EXAMPLES:
EZV-2..

EZV-3..

GENERAL ORDER INFORMATION

HOW TO ORDER

BY PHONE Monday to Thursday 8.30 to 16.45 , Friday 8.30 to 16.15 . Orders for delivery the following day must be placed before 15.00. After this time please call us. Please confirm all verbal orders in writing marked "confirmation order".
BY FAX Any time on $+44(0) 1480$ 407076. Please specify product , quantity, description, delivery and invoice address, order numbers and delivery method.
BY EMAIL Send to sales@electrocontrols.co.uk

TECHNICAL INFORMATION

For further information on listed products do not hesitate to call us on $+44(0) 1480407074$. We can supply technical data sheets where available or offer technical assistance with your application.

RETURNED GOODS

Returned goods will only be accepted if faulty and when accompanied by complete documentation.
A minimum restocking charge of 25% will be made for returned goods which are found not to be faulty.
All returns must be agreed in advance.

CONDITIONS OF SUPPLY PRICES

Prices shown exclude VAT. The prices are subject to change with appropriate notice.

TERMS

See Terms and Conditions at the back of the catalogue.

MINIMUM ORDER VALUE

The minimum order value is $£ 50$ net order value unless agreed in writing in advance.

DELIVERY CHARGE

Unless agreed in writing in advance the fixed delivery charges will be:
$£ 13.50$ for 1 to 2 day delivery in England, Scotland and Wales.
$£ 25.50$ for next weekday delivery before 10.00 in England, Scotland and Wales.
$£ 16.50$ for 1 to 2 day delivery in N.Ireland.
Deliveries to Southern Ireland by quotation.
Overseas deliveries by quotation.

DISCOUNTS

For general business discounts are by written agreement.
For large quantity orders we will be pleased to quote special discounts for a specific order.

SAFETY PRECAUTIONS

Make sure you have selected the correct input voltage for the product before installation.
The product wiring should be checked by a qualified technician before applying voltage to it.
Observe all applicable safety precautions and wiring and earthing regulations.
Isolate the product from the mains before removing any covers.
Observe any special requirements for cabling, screened cable, for example.
If failure of a fuse occurs determine the reason for failure before replacing it with a new one of the correct type and current rating.
After installation ensure that the product works correctly. If failure of the device can cause damage a safety back up control should be fitted.

Under no circumstances use a product for a purpose other than that defined in the catalogue. If in doubt consult the factory.

Retain the product data sheets for future use.
Product data given is for guidance purposes only and is subject to change without prior notice. Its accuracy is not guaranteed unless confirmed by us in writing.

NOTES

bor BLÜCHER MICROfLEX SOCLA \backslash valpes

Watts Industries UK Ltd
Colmworth Business Park, Eaton Socon, St. Neots, PE19 8YX, UK
T: +44 (0) 1480407074

[^0]: INSTALLATION: Outside Thermostats \& Sensors which are used for frost protection should be mounted on the North side of the building. If this is not possible, shield the sensor from direct sunlight.

[^1]: INSTALLATION: The unit should be mounted on a pole at a height of about 2 m .
 Situate the unit in a clear site which is most representative of the area to be monitored.
 Avoid extremes ie hilltops which may indicate increased wind speeds, or valleys and in close proximity to trees and buildings which may indicate decreased wind speeds due to shielding.
 Several sensor heads can be installed to give spatial coverage and thus achieving more precise results.
 Ensure the elbow points NORTH using a compass or gently rotate the vane until 0 or 357 is indicated on a suitable measuring instrument, as this will represent North. Fix and tighten the bracket at this position.

[^2]: INSTALLATION: The unit should mounted to a mast with a diameter of between $30-50 \mathrm{~mm}$ with the supplied V-shaped clamp and bracket. Situate the unit in a clear site which is most representative of the area to be monitored.
 Avoid extremes ie hilltops which may indicate increased wind speeds, or valleys and in close proximity to trees and buildings which may indicate decreased wind speeds due to shielding.
 Several sensor heads can be installed to give spatial coverage and thus achieving more precise results.
 Ensure the elbow points NORTH using a compass or gently rotate the vane until 0° or 357° is indicated on a suitable measuring instrument, as this will represent North. Fix and tighten the bracket at this position.

[^3]: 1 Ensure the arrow on the housing points in the direction of flow.
 2 Mount at any angle from vertical to 30 degrees above the horizontal. Other positions are not recommended as particles may fall into the unit and obstruct the rod from moving freely. It is recommended that a filter is installed upstream of the unit to protect against foreign particles.

 3 Mount away from elbows, bends and other restrictions likely to cause turbulence.
 4 Upstream-downstream of the switch should be straight for at least $5 \times$ pipe diameter.
 Ensure that the pipes / tubes are not pushed too far into the flow switch connections as this can restrict the paddle from moving freely and affecting the correct switching operation.

 If adjustment is required, do not over-adjust as this may result in the switch failing to return.

